テーマ解説

長いらせん導体の磁場，ベクトルポテンシャル及びインダクタンス

冨中 利治

Magnetic Field, Vector Potential and Inductances of Long Helical Conductors

Toshiharu TOMINAKA

Synopsis: The analytical formulæ of the magnetic field, the vector potential and the inductances of long helical conductors with an arbitrary pitch are given as a unified scheme from a helical solenoid to a straight conductor. It is also shown that the obtained expressions are consistent with the well-known expressions for a closely wound helical solenoid and a straight conductor in both limits of the infinitesimal and infinite twist pitches, respectively. In addition, the right-handed and left-handed long helical conductors are clearly treated for this unified scheme.

Keywords: classical electromagnetism, solenoid, helical conductor, magnetic field, vector potential, inductance

(Some figures in this article may appear in colour only in the electronic version)

1. はじめに

電磁気の教科書で，長い直線導体（並進対称）と密巻きソレノイド（軸対称）の磁場及びインダクタンスについて基礎的な記述はあるが，直線導体と密巻きソレノイドの統一的な記述にはなってない14). この理由は，密巻きソレノイドの電流を円筒上に連続的に分布した円電流，または円電流と直線電流で近似しているが，円筒上の連続的分布ではない，離散的ならせん電流（らせん対称）は，本質的に円電流と直線電流の重ね合わせでは表わせず，初等的に扱えないことに起因している。ここでは，解析的な扱うために，らせん導体が長い場合のみに限定している。

Smythe の電磁気の教科書で，無限に長い，任意のピッチのらせん電流について，ビオ-サバールの公式を用いてらせん電流に沿った積分計算によって，中心軸上の軸方向，動径方向の磁場が得られている4). Morozov と Soloviev によるプラズマ物理分野の文献には，無限に長い，任意ピッチのらせん電流による任意の場所での磁場について，周期的デルタ関数の無限級数展開を用いて，変形ベッセル関数の無限級数の解が得られている5). この文献に気づかず，他にも同等な検討がされている6-8).

また更に，ベクトルポテンシャルの導出と同様にして，長い右巻きらせん導体のインダクタンスが得られている12). 特に，ピッチが同じでも右（または左）と左のらせん間の相互インダクタンスの違いから，右，左のらせんを区別して扱うことが必要になる13). 従来，らせんを典型例として，右らせんのみの磁場，ベクトルポテンシャル，インダクタンスが扱われていたが，ここでは，右，左のらせん導体の両方を扱う。直線導体と密巻きソレノイドを統一的に含む任意ピッチのらせん導体の公式の導出の意義は，実質的には疎巻きらせん導体の公式を明らかにすることにあらん。この公式によって，らせん導体で構成された単純な撚線についての解析的な計算が可能になる。特に，抵抗ゼロの超伝導導体では電流分布がインダクタンスに依存するので，撚線の電流分布の計算も可能になる。

2. らせん導体とらせんスリット入り円筒導体

らせんの左右は，一般に Fig. 1(a)に示す形状のらせんを，右または右巻きらせん (right-handed helix)，その逆をらせん（left-handed helix）と定義している14,15). ただし，撚糸，ロープなどの撚線の撚りに関して，日本と英米で左右の定義が逆で，右撚り（英米でleft-hand layに対応）及び左撚り（right-hand lay）なので，注意が必要である。
Fig. 1 (a) Right-handed helical thin conductor and a cylindrical conductor with a right-handed helical thin slit (unclosed loop).

Fig. 1(a)に示すようならせん導体を記述するために、単位長さあたりの巻数 n またはピッチ l_p (1/n) ではなく、右巻き、左巻きの両方を記述するために、k = 4πl_p = 4πn
(＋は右巻き、－は左巻き、−∞<k<∞) で定義される k（ここでは「ツイストパラメータ」と呼ぶ）を用いる。ここで、Fig. 1(a)に示すような、細らせん導体について考えるが、Fig. 1(b)に示すような、隙間が無限小かららせんスリットを入るらせん電流が一部に分布した、同じ半径の薄肉円筒導体（以後、簡単に「らせんスリット入り円筒導体」と呼ぶこととする）と比較する。らせんスリット入り円筒導体は、らせん対称であるが、軸対称でもあり、数学的には簡単な扱うことができる。これら二つの円筒状らせん導体は、一方の円筒の内の導体、隙間部分がそれぞれ、他方の円筒、導体部分に対応しており、互いに陰陽の関係にあるといえる。これら 2 種類の円筒状らせん導体は、l_p→0 への極限では、等価な密巻きらせんソレノイド（軸対称）に変わる。しかし、らせんスリット入り円筒導体は円筒導体になる。

3. ベクトルポテンシャルと磁場

Fig. 1(a)に示すような、無限に長い、半径 a, z=0 での θ 座標が ϕ のらせん電流のベクトルポテンシャルを、積分公式から求める。線積分ではなく面積分として扱う 10,11.

\[\mathbf{A}(r, \theta, z) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J} dS'}{|r-r'|} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\theta', z') \mathbf{a} \mathbf{d} \theta' d\theta' dz'}{|r-r'|} \]

ここで、Fig. 2 に示すように、極座標 (r_1, \theta_1) 及び (r_2, \theta_2) を (a, \theta') 及び (r, \theta) に対応させて考えれば、円筒座標系における電流源 (a, \theta', z') と場の点 (r, \theta, z) の間の距離は次式になる。

\[|r-r'| = \sqrt{(z-z')^2 + a^2 + r^2 - 2ar\cos(\theta-\theta')} \]

更に、電流源と場の点における単位ベクトル系の関係は次のようにある。

\[\hat{\mathbf{z'}} = \hat{\mathbf{z}} \]

\[\hat{\mathbf{\theta'}} = \sin(\theta-\theta')\hat{\mathbf{r}} + \cos(\theta-\theta')\hat{\mathbf{\theta}} \]

(3)

らせん線電流の場合、円筒上にある電流密度（正確には、円筒電流密度）は軸方向（\(z'\)方向）及び円周方向（\(\theta'\)方向）の電流密度を用いて一般に次のように表すことができる。

\[\mathbf{j}(\theta', z') = j_r(\theta', z')\hat{\mathbf{r}} + j_\phi(\theta', z')\hat{\mathbf{\phi}} \]

(4)

正の軸方向（+\(z'\)方向）の向きに流れる電流 I のらせん電流の場合、\(z\)及び\(\theta\)方向の電流密度は次の条件を満たす。

\[\int_{\theta=\theta_1}^{\theta_2} j_r(\theta', z') ad\theta' = I \int_{z_1}^{z_2} j_\phi(\theta', z') dz' = \pm I \]

(5)

ここで、正符号は右巻き (k<0), 負符号は左巻き (k<0) に対応している。これは、右巻きまたは左巻きで \(\theta\) 方向電流密度の符号が逆になるためである。Fig. 1(b)に示すような、半径 a のらせんスリット入り円筒導体の場合、円筒上のあらゆる点で電流密度は同じである。式(5)より右巻きと左巻きともに、\(k\) を用いすることで同じ式で表わせる。

\[j_r = \frac{I}{2\pi a}, \quad j_\phi = \frac{l_k}{2\pi} \]

(6)

Fig. 1(a)に示すような、半径 a, z=0 での θ 座標が ϕ のらせん電流の場合、両方向の電流密度を、付録の(A1)式を利用して、円筒上に連続的に分布した高調波成分の重ね合わせとして扱うと次式が得られる。

\[j_r(\theta', z') = \frac{I}{a} \sum_{m=-\infty}^{\infty} \delta(\theta' - \phi - kz' - 2\pi m) \]

\[= \frac{l}{2\pi a} \left\{ 1 + 2 \sum_{m=1}^{\infty} \cos(n(\theta - \phi - kz')) \right\} \]
結局，の場合と方向の電流密度は、右巻きと左巻きともに正負で定義した を用いることで同じで表わせる。ここで，上式の括弧内が定数項1のみの場合は，式(6)になり，らせんスリット入り円筒導体の場合に対応している。そこで，ベクトルポテンシャルは次の積分式で表わせる。

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} \int_0^{2\pi} \frac{1}{2\pi} \left(1 + 2 \sum_{m=1}^{\infty} \cos m(\theta' - \phi - k \cdot z) \right) d\theta' dz' \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} \int_0^{2\pi} \frac{1}{2\pi} \left(1 + 2 \sum_{m=1}^{\infty} \cos m(\theta' - \phi - k \cdot z) \right) d\theta' dz' \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]

ここで，次のように積分変数を変更する。

\[
\begin{align*}
\frac{z - z'}{s} &= \frac{\theta - \theta'}{t} \\
A_i(r, \theta, z) &= \frac{\mu_0}{4\pi} \int_0^{2\pi} \frac{1}{2\pi} \left(1 + 2 \sum_{m=1}^{\infty} \cos m(\theta' - \phi - k \cdot z) \right) d\theta' dz' \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\end{align*}
\]

式(8)の積分内の括弧内の第2項は，次のようにになる。

\[
\begin{align*}
\cos m(n(\theta - \phi - k \cdot z)) &= \cos m(n(\theta - \phi - k \cdot z)) - m(t k s) \\
&= \cos m(n(\theta - \phi - k \cdot z)) [\cos m(n k) \cos(m k s) + \sin m(n t) \sin m(n k s)] \\
&+ \sin m(n(\theta - \phi - k \cdot z)) [\sin m(n k) \cos(m k s) - \cos m(n k) \sin m(n k s)]
\end{align*}
\]

上式のcos(nk)またはsin(nk)及びsin(nk)の項の寄与はゼロなので，それらの項を削除すると次のようになる。ゼロになることは，下記の式の計算と同様に確認できる。

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} I_k a \int_0^{2\pi} \frac{1}{2\pi} \sin m t dt ds \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} I_k a \int_0^{2\pi} \frac{1}{2\pi} \sin m t dt ds \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} I_k a \int_0^{2\pi} \frac{1}{2\pi} \sin m t dt ds \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} I_k a \int_0^{2\pi} \frac{1}{2\pi} \sin m t dt ds \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} I_k a \int_0^{2\pi} \frac{1}{2\pi} \sin m t dt ds \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} I_k a \int_0^{2\pi} \frac{1}{2\pi} \sin m t dt ds \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]

\[
A_i(r, \theta, z) = \frac{\mu_0}{4\pi} I_k a \int_0^{2\pi} \frac{1}{2\pi} \sin m t dt ds \times \left[1 + 2 \sum_{m=1}^{\infty} \sin(n(\theta - \phi - k \cdot z)) \sin(n t) \cos(n k) \right]
\]
ここで，\(I_a(z) \)，\(K_a(z) \)は変形ベッセル関数を表す。

結局，無限に長い半径 a, z=0 での\(\phi \)座標の\(\partial e \)を変わ
電流のベクトルポテンシャルが次のように得られる。ここで，c 定数，内側（\(r < a \)）について
\[
A_x(r, \theta, z) = -\frac{\mu I}{2\pi} \int k a \sum_{n=1}^{\infty} \sin(n(\theta - \phi - k z)) \frac{1}{r} dr \]
\[
+ \frac{\mu I}{\pi} \sum_{n=1}^{\infty} K_n(k r a) I_n(k r a) \cos[n(\theta - \phi - k z)]
\]
外側（\(r > a \）について
\[
A_x(r, \theta, z) = -\frac{\mu I}{2\pi} \int k a \sum_{n=1}^{\infty} \sin(n(\theta - \phi - k z)) \frac{1}{r} dr \]
\[
+ \frac{\mu I}{\pi} \sum_{n=1}^{\infty} K_n(k r a) I_n(k r a) \cos[n(\theta - \phi - k z)]
\]

外側（\(r > a \）について
\[
A_y(r, \theta, z) = -\frac{\mu I}{2\pi} \int k a \sum_{n=1}^{\infty} \sin(n(\theta - \phi - k z)) \frac{1}{r} dr \]
\[
+ \frac{\mu I}{\pi} \sum_{n=1}^{\infty} K_n(k r a) I_n(k r a) \cos[n(\theta - \phi - k z)]
\]

ここで，\(\phi \)に依存しない定数項は，らせんスリット入り円筒
導体のベクトルポテンシャルまたは磁場である。また，上
記のらせん導体の式の電流 I を \(j \sin(\phi) \)と \(k \)を
置き変えて\(\partial e \)について0から2\pi まで積分すると，\(\phi \)に依
存する項の寄与はゼロになり，らせんスリット入り円筒導
体の式になることも確認できる。これに，上記の表式から,
ツイストピラメータ k が 0 及び \(\pm \infty \)の極限の計算によって,
直線導体及び密巻きらせんソレノイドのよく知られた初等

\[B = \nabla \times A \text{ より，次のように磁場が得られる。} \]

\[
\begin{align*}
\int s \int \cos(2\pi t) \cos(nkr) \cos(2\pi t) dt d\phi &= \frac{2\pi}{\sqrt{a^2 + r^2 + r^2 - 2ar \cos t}} \\
&= \left[2\pi \{ K_{n1}(k r a) I_{n1}(k r a) + K_{n1}(k r a) I_{n1}(k r a) \} \right] \quad r < a \\
&= \left[2\pi \{ I_{n1}(k r a) K_{n1}(k r a) + I_{n1}(k r a) K_{n1}(k r a) \} \right] \quad r > a \\
\int s \int \cos(2\pi t) \cos(nkr) dt d\phi &= \left[4\pi K_{n1}(k r a) I_{n1}(k r a) \right] \quad r < a \\
&= \left[4\pi I_{n1}(k r a) K_{n1}(k r a) \right] \quad r > a \\
\end{align*}
\]
的な公式が次の漸進式として得られる \(^{(1)}\)。ベクトルポテンシャルについて、\(k \to 0\) の極限での直線導体の場合、内側 \((r < a)\)、外側 \((r > a)\) ともに、ベクトルポテンシャルの次の成分のみゼロではない。そこで、平方根の数は直線導体からの距離である。

\[
\lim_{k \to \infty} A_i(r, \theta, z) = -\frac{\mu_0 I}{2\pi} \log \sqrt{a^2 + r^2 - 2ar \cos(\theta - \phi)}
\]

同様に、\(k \to \pm \infty\) の極限での電流密度 \(j_i, j_z\) は、式\((12)\)が得られる。

上記の磁場、ベクトルポテンシャルの無限級数の式を最初の \(N_0 = 50\) まで計算した。無限に長い \(k = \pm 2\pi/\ell, \ell = 150\) rad/mm のらせん導体の磁場ベクトル \((B_x, B_y)\) とらせん対称な磁場での磁力線を表す \(A_1(r, \theta, z) + k \cdot A_0(r, \theta, z) = \text{const}\) の等高線を Fig. 3 に示す \(^{(1)}\)。ベクトルポテンシャルの等高線は、誘導される電流の実際に見られた磁力線の様子をよく再現しており、無限級数の公式が有用なことがわかる。

4. インタクタンス

4.1 相互インタクタンス

Fig. 4 に示すように、同軸の軸長 \(l\)，半径 \(r_1, r_2, z = 0\) での座標 \(\varphi_1\)、ツイストパラメータ \(k_1\) 及び \(r_1, \varphi_2, k_2\) の二つのらせん導体間の相互インタクタンス \(L_{12}\) を、軸長 \(l\) と半径及び（直線導体ではない場合）ピッチより長いという条件で \(l = r_1(2\pi)\)、\(l > r_1\) （または \(l_2\)）で、ノイマンの公式により計算する。ここで、総面積ではなく面積で扱う \(^{(12)}\)。

\[
L_{12} = \frac{\mu_0}{4\pi} \frac{1}{L_1} \int \frac{l}{|r - r_1|} dr \int \frac{l}{|r - r_2|} dr \\
+ \int \int \int \frac{1}{\sqrt{(z - z_1)^2 + r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta_1 - \theta_2)}}
\]

らせん導体の場合、電流密度 \(j_i(\varphi, z)\) と \(j_z(\varphi, z)\) は、式\((7)\)と同様に、次のようになる。

\[
\begin{align*}
\frac{j_i(\varphi, z)}{J} &= \frac{l}{2\pi} \left\{ 1 + \sum_{n=1}^{\infty} \cos[m(\varphi - \varphi_1 - k_1z)] \right\} \\
\frac{j_z(\varphi, z)}{J} &= \frac{l}{2\pi} \left\{ 1 + \sum_{n=1}^{\infty} \cos[m(\varphi - \varphi_1 - k_1z)] \right\}
\end{align*}
\]

Fig. 2 に示すように、二つの同軸円筒型の基本ベクトルの関係は、式\((3)\)と同じ様に次式で表わされる。

\[
\begin{align*}
\hat{z} &= \hat{z} \\
\hat{\theta}_i &= \sin(\varphi - \varphi_1) \hat{r}_i + \cos(\varphi - \varphi_1) \hat{\theta}_i
\end{align*}
\]

\[
\text{Fig. 4 Schematic view of two coaxial helical thin conductors of the axial length } l \text{ } (>> r_2 \geq r_1), \text{ with the twist parameter } k_1 \text{ } (= +2\pi l_1, \text{ right-handed helix}) \text{ and the pitch length } l_1, \text{ the angle } \varphi_1 \text{ at } z = 0 \text{ and } k_2 \text{ } (= -2\pi l_2, \text{ left-handed helix}), \varphi_2 \text{ at } z = 0.
\]

それで、式\((19)\)の二つの電流密度のスカラー積は、次のように表わせる。

\[
\begin{align*}
\hat{j}_i \cdot \hat{j}_z &= j_i j_z \cos(\theta - \varphi) \\
&= 2 \left(J \int r d\varphi dz \int r d\varphi dz \right) \\
&\times \left[\int \int \int \frac{1}{\sqrt{(z_1 - z)^2 + r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta_1 - \theta_2)}} \right]
\]

\[
\begin{align*}
L_{12, z} &= \frac{\mu_0}{4\pi} \frac{1}{r_1^2} \\
L_{12, \varphi} &= \frac{\mu_0}{4\pi} \frac{k_2}{r_1^2}
\end{align*}
\]

ここで、\(J\)は下記のようになる。

\[
\begin{align*}
J &= 1 \\
&+ 2 \sum_{n=1}^{\infty} \cos[m(\varphi - \varphi_1 - k_1z)] + 2 \sum_{n=1}^{\infty} \cos[n(\varphi - \varphi_2 - k_2z)] \\
&+ 4 \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \cos[m(\varphi - \varphi_1 - k_1z)] \cos[n(\varphi - \varphi_2 - k_2z)]
\end{align*}
\]
\[\theta = \theta_1 - \theta_2, \quad \theta' = \theta_1 - \theta_2, \quad \text{or} \quad \theta_0 \]

この積分変数の変換により、J の第 2 項では \(\theta_0 \), 第 3 項では \(\theta_0 \), 第 4 項では \(\theta_1 \) または \(\theta_2 \) に変数変換することができ、\(\theta \) に依存する項の寄与はゼロになる。したがって、J は下記のようになる。

\[
J \rightarrow 1 + 2 \sum_{n=1}^{\infty} \cos \left(n \left(\theta - \theta_0 \right) - \frac{k_1 + k_2}{2} z - \frac{k_1 - k_2}{2} z' \right)
\]

(27)

ここで、\(k_1-k_2>2\pi l \)（ここで、らせん導体の軸長 \(l \) は長いと仮定しているので、実質的には \(k_1 \& k_2 \) を意味する）の場合、式(27)の第 2 項は \(z' \) に関して振動的になるので、\(z' \) に関する積分は、ほとんどゼロになる。ワシトパラメータ \(k_1 \) 及び \(k_2 \) は連続変数なので、\(2\pi l \) 程度の違い \((k_1-k_2>2\pi l) \) ということはあるが、その範囲が狭く実質的に重要ではないので、ここでは考慮しないことにするので、\(k_1 \) 及び \(k_2 \) の次の連続関数 \((k_1, k_2) \) を導入する。

\[
\delta(k, k') = \begin{cases} 1 & (k_1 - k_2 < 2\pi l) \\ 0 & (k_1 - k_2 >> 2\pi l) \end{cases}
\]

(28)

したがって、J は次のように表わせる。ここで、\(k_1=k_2 \) の場合、\(k=(k_1=k_2) \) を使う。

\[
J \rightarrow 1 + 2 \delta(k, k') \sum_{n=1}^{\infty} \left(\cos[n(\theta - \theta_0)] + \sin[n(\theta - \theta_0)] \sin(nkz) \right)
\]

(29)

更に、積分変数 \(z_1, z_2 \), \(z' \) に関する積分は、次のように \(z, z' \) に関する積分に変形できる。

\[
\int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} f(z, z', z''d z_1 d z_2 d z' = \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \delta(z, z', z'')d z_1 d z_2 d z' = \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} g(z, z', z''d z_1 d z_2 d z'') = \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} g(z, z', z'')d z_1 d z_2 d z' = \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} g(z, z', z'')d z_1 d z_2 d z' = \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} g(z, z', z'')d z_1 d z_2 d z' = \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} g(z, z', z'')d z_1 d z_2 d z' = \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} g(z, z', z'')d z_1 d z_2 d z'
\]

(30)

したがって、J において \(\sin(nkz) \) または \(\sin(n\theta) \) を含む項は、それぞれ \(z, \theta \) に関して奇関数なので、その寄与はゼロになる。結局、式(24)は次のように簡単になる。

\[
L_{12,\varphi} = \frac{\mu_0 k r_2}{2(\pi)^3} \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \frac{d \theta d \phi d z d z'}{\sqrt{z^2 + r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta}}
\]

(31)

上式の全括弧が 0 の場合（式(25)で J=1 の場合）は、Fig. 5 に示すように、同軸の長い、軸長 \(l \) の半径 \(r_1 \)、ツイストパラメータ \(k_1 \) 及び \(r_2 \)、k_2 の二つのらせんスリット入り円筒導体間の相互インダクタンス L12 を求める。軸方向電流による寄与 L12日本の導出は、半径 \(r_1, r_2 (> r_1) \) の同心円間の幾何学的平均距離が \(r_2 \) であるとこの計算と同様であり、付録の式(A2), (A3)を用いて、次式が得られる。

\[
L_{12,\varphi} = \frac{\mu_0 k k_1 k_2 r_2}{2(\pi)^3} \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \frac{d \theta d \phi d z d z'}{\sqrt{z^2 + r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta}}
\]

(32)

また、周方向電流による寄与 L12,\theta, は、単位長さあたりの寄与をそれらの \(n_0, \theta_0 \) とすると、1 \(\phi \) \(r_2 \) 条件の下に付け足した式 (A2), (A3) を用いて、次式が得られる。

\[
L_{12,\theta} = \frac{\mu_0 k k_1 k_2 r_2}{2(\pi)^3} \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \frac{d \theta d \phi d z d z'}{\sqrt{z^2 + r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta}}
\]

(33)

\[
= \frac{\mu_0 k k_1 k_2 r_2}{2(\pi)^3} \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \frac{d \theta d \phi d z d z'}{\sqrt{z^2 + r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta}}
\]

(34)

得られた結果は、スレノイドの相互インダクタンスのよく知られた公式である。結局、二つのらせんスリット入り円筒導体間の相互インダクタンス L12 は次式になる。

\[
L_{12} = L_{12,\varphi} + L_{12,\theta} = \frac{\mu_0 k k_1 k_2 r_2}{2(\pi)^3} \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \frac{d \theta d \phi d z d z'}{\sqrt{z^2 + r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta}}
\]

(35)

Fig. 5 Two coaxial cylindrical conductors with a helical thin slit.

\[
L_{12,\varphi} = \frac{\mu_0 k k_1 k_2 r_2}{2(\pi)^3} \int_0^{2\pi} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \int_{z_1}^{z_2} \frac{d \theta d \phi d z d z'}{\sqrt{z^2 + r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta}}
\]

(36)

上記の結果は、開ループとしてのスレノイドの相互インダクタンスに対応する。ただし、軸長 \(l \) は長いか有限なので、k_1,k_2 \(\in \mathbb{C} \)の寄与の極値では、L_{12,\theta} \(L_{12,\varphi} \)から L_{12} \(L_{12,\varphi} \)
となるので, 式(33) は, 開ループのソレノイドの相互インダクタンスであるが, また開ループでの密巻きの極限とも考えられる。

式(34) の半径について, \(r_1 \rightarrow r_2 (= r) \) の極限として, 次の自己インダクタンスが得られる。

\[
L_{11} = L_{12} + L_{11,\phi} = \frac{\mu_0}{2\pi} \left(\log \frac{2l}{r} - 1 \right) + \frac{\mu_0 l}{4\pi} k^2 r^2
\] \hspace{1cm} (35)

以上の結果から, 内側磁場が一様として初等的に得られるソレノイドのよく知られた自己相互インダクタンスの公式は, \(k_1, k_2 \rightarrow \pm \infty \) の密巻きの極限でのらせんスリット入り円筒導体の公式に対応することを確認できる。

式(31)の第 1 式の {} 括弧内の第 2 項は, \(k_1 = k_2 (= k) \) の場合に \(l >> r_2 \) の条件の下に付録の式(A4), (A5) を用いて, 次式が得られる。

\[
\frac{\mu_0}{2(2\pi)^2} \left\{ \frac{\mu_0 l}{2\pi} I_s (d|dl|K_n (d|dl|) \right\} = \frac{\mu_0 l}{2\pi} \sum_{n=1}^{\infty} \cos(n\theta) \cos(nkz) d\theta dz' \frac{1}{\sqrt{z^2 + r_1^2 + r_2^2 - 2rr_c \cos \theta}}
\] \hspace{1cm} (36)

ここで, 長いらせん導体の極限での漸近式を求めていきないので, 次のように近似できる。

\[
\int_{r_2}^{\infty} \frac{\cos nkr_c \sqrt{r_1^2 + r_2^2 - 2rr_c \cos \theta}}{\sqrt{z^2 + r_1^2 + r_2^2 - 2rr_c \cos \theta}} dz \approx K_c \left(\frac{d|dl|}{r_1^2 + r_2^2 - 2rr_c \cos \theta} \right)
\] \hspace{1cm} (37)

同様に, 式(30)の第 2 式の第 2 項については, 次式が得られる。

\[
\frac{\mu_0^2 k^2 r_{1r} r_{2}}{2(2\pi)^2} \left\{ \frac{\mu_0 l}{2\pi} I_s (d|dl|K_n (d|dl|) \right\} = \frac{\mu_0^2 k^2 r_{1r} r_{2}}{2(2\pi)^2} \sum_{n=1}^{\infty} \cos(n\theta) \cos(nkz) d\theta dz' \frac{1}{\sqrt{z^2 + r_1^2 + r_2^2 - 2rr_c \cos \theta}}
\] \hspace{1cm} (38)

この結果は, らせんスリット入り円筒導体の相互インダクタンスの式(34)と比べて, \(k_1 \neq k_2 \) の場合は同じであるが, \(k_1 = k_2 \) の場合のみ, 各らせん導体の角度 \(\varphi_1, \varphi_2 \) に依存する項が付加される。すなわち, \(L_{12} \) は, \(k_1 \neq k_2 \) の場合の \(L_{12} (r_1, r_2, k_1, k_2) \) と, \(k_1 = k_2 \) の場合の \(L_{12} (r_1, r_2, k, \varphi_1, \varphi_2) \) とで依存する変が異なる。この結果は, Fig. 6 からわかることに対応している。Fig. 6(a)からわかるように, \(k_1 = k_2 \) の場合, 二つの長い同軸らせん導体の相対的な幾何的関係は中心軸のまわりの相対的な回転によって変化する。つまり相互インダクタンス \(L_{12} \) は, \(z = const \) 平面での二つのらせん導体の角度差 \(\varphi_2 - \varphi_1 \) に依存することがわかる。他方, Fig. 6(b)からわかるように, \(k_1 = -k_2 (k_1 \neq 0) \) のような, \(k_1 \neq k_2 \) の場合には, 相対的な回転によって変化せず, 角度差 \(\varphi_2 - \varphi_1 \) に依存しない。これより, 單位長さあたりの導体は, 單位長さあたりの導体 n またはピッチ \(p \) ではなく, らせん導体の右巻き, 左巻きを区別できるツイストパラメータ \(k = \pm 2\pi l_p \) を用いて表す必要があることがわかる。

更に, らせん導体の式(39)から, 電流密度が均一な, 同軸の \(S_1, S_2 \) 断面をもつ二つのらせん導体間の相互インダクタンス \(L_{12,3} \) は, 一般に次式で与えられる。
われらせんスリット入り円筒導体との関係は、算では求められず、ノイマンの公式に依る計算が必要になることがわかる。他方、らせんスリット入り円筒導体との同等性から、初等的な計算で求めることができる。この式から、らせんスリット入り円筒導体の相互インダクタンスは、ノイマンの公式の式と同様に、寄与はゼロになるので、更に、

\[
L_{12} = \frac{1}{SS} \int r_i \int r_j \left(L_{12}(r_i, r_j, k_1, k_2, \phi_i, \phi_j) \right) ds_i ds_j
\]

（40）

更に、\(S_1=S_2\) として、\(S_i\) の断面をもつらせん導体の自己インダクタンス \(L_{11,15}\) が得られる。この式から、らせんスリット入り円筒導体の相互インダクタンスは、\(S_i = 2\pi r_i\) と \(S_j = 2\pi r_j\) として導出できる。

\[
L_{11} = \frac{1}{SS} \int r_i \int r_j \left(L_{11}(r_i, r_j, k_1, k_2, \phi_i, \phi_j) \right) ds_i ds_j
\]

（41）

他方、\(k_1=k_2\) の場合、相互インダクタンス \(L_{12}\) は、らせん導体の位置（角度差） \(\phi_2-\phi_1\) に依存しないので、次式が得られる。

\[
L_{12} = \frac{1}{4\pi^2 r_i r_j} \int_{\phi_1}^{\phi_2} \int_{\phi_1}^{\phi_2} L_{12}(r_i, r_j, k_1, k_2, \phi_2, \phi_1) d\phi_2 d\phi_1
\]

（42）

任意の導体断面をもつらせん導体の自己及び相互インダクタンスの積分表式（39）は、例外的に、断面が薄い円弧形のらせんテープ導体に関して、数学的に厳密な取り扱いが可能である。このため、導体外側表面への影響はゼロになるので、

\[
\lim_{k_1, k_2 \to \infty} L_{12} = \frac{\mu_l}{2\pi} \left(\frac{2l}{\log r_i} - 1 \right)
\]

（43）

任意の導体断面をもつらせん導体の自己及び相互インダクタンスの積分表式（39）は、例外的に、断面が薄い円弧形のらせんテープ導体に関して、数学的に厳密な取り扱いが可能である。このため、導体外側表面への影響はゼロになるので、

\[
\lim_{k_1, k_2 \to \infty} L_{12} = \frac{\mu_l}{2\pi} \left(\frac{2l}{\log r_i} - 1 \right)
\]

（43）

任意の導体断面をもつらせん導体の自己及び相互インダクタンスの積分表式（39）は、例外的に、断面が薄い円弧形のらせんテープ導体に関して、数学的に厳密な取り扱いが可能である。このため、導体外側表面への影響はゼロになるので、

\[
\lim_{k_1, k_2 \to \infty} L_{12} = \frac{\mu_l}{2\pi} \left(\frac{2l}{\log r_i} - 1 \right)
\]

（43）

任意の導体断面をもつらせん導体の自己及び相互インダクタンスの積分表式（39）は、例外的に、断面が薄い円弧形のらせんテープ導体に関して、数学的に厳密な取り扱いが可能である。このため、導体外側表面への影響はゼロになるので、

\[
\lim_{k_1, k_2 \to \infty} L_{12} = \frac{\mu_l}{2\pi} \left(\frac{2l}{\log r_i} - 1 \right)
\]

（43）

任意の導体断面をもつらせん導体の自己及び相互インダクタンスの積分表式（39）は、例外的に、断面が薄い円弧形のらせんテープ導体に関して、数学的に厳密な取り扱いが可能である。このため、導体外側表面への影響はゼロになるので、

\[
\lim_{k_1, k_2 \to \infty} L_{12} = \frac{\mu_l}{2\pi} \left(\frac{2l}{\log r_i} - 1 \right)
\]

（43）
導体中心の2点を通る二つのフィラメント間の相互インダクタンスL_{ij}の平均で近似する（32）。

\[L_{ij} = L_{1} + \frac{L_{2}(r-a,r,k,0)}{2} \]

(44)

内部インダクタンス L_{1} は、らせん導体のピッチ l_{p} での導体長が、直線導体の場合より、$(l_{p}^{2} + 2mr^{2})^{1/2} l_{j}$ ほど長くなることを考慮して、導体内部の磁気エネルギーから次のように計算できる。

\[L_{1} = \frac{\mu l}{8\pi} \left(\frac{l^{2} + 2r^{2}}{l_{j}} \right) \]

(45)

上記の式(44)が、$k \to 0$（または $l_{p}^{2} \to \infty$）の極限において、直線導体の自己インダクタンスになる。

\[\lim_{k \to 0} L_{1} = \frac{\mu l}{2\pi} \left(\frac{2l}{a} \right)^{3/4} \]

(46)

また、$k \to \pm \infty$（または $l_{p}^{2} \to 0$）の極限において、$r>a$ の細い導体の密巻きのインダクタンスの式(35)に一致することを確認できる。

4.3 インダクタンスのピッチ依存性

らせんの良好に知られたインダクタンスの公式、及びFig. 5 または Fig. 1(b) に示すらせんスリット入り円筒導体の式と比較しながら、Fig. 4 または Fig. 7 に示すらせん導体のピッチ依存性を示す。導体軸長 $l = 1$ m、半径 10 mm、角度差 $\Delta \theta = \varphi_{1} - \varphi_{0} = 0$ 及び $\theta_{1} = k \pm 2a l_{p}$ の同軸らせん導体間の相互インダクタンスのピッチ l_{p} 依存性をFig. 8 に示す。ここで、黒の実線及び破線はらせん導体の相互インダクタンスの式(39)の最初の 100 項 ($N = 100$) までの和、色付きの実線（青）はらせんスリット入り円筒導体の式(34)及び色付きの破線（赤）は閉ループのソレノイドの良好に知られた公式(33)である。らせんスリット入り円筒導体の相互インダクタンスの式(42)及びFig. 8 からわかるように、らせん導体の平均的な値になる。

導体軸長 $l = 1$ m、半径 10 mm、導体半径 0.5 mm のらせん導体の自己インダクタンスのピッチ l_{p} 依存性をFig. 9 に示す。ここで、黒の実線、らせん導体の自己インダクタンスの式(44)(及び(39))の最初の 100 項 ($N = 100$) までの計算、黒丸は、式(40)(及び(39))の最初の 50 項 ($N = 50$) までの数値積分計算、色付きの実線（青）は、らせんスリット入り円筒導体の式(35)及び色付きの破線（赤）はソレノイドの良好知られた公式（式(35)の第 2 項）である。色付きの実線（青）で示した、らせんスリット入り円筒導体は、$l_{p} \to \infty$ の極限で円筒体になり、ピッチ l_{p} 依存性は似ているが、丸葉のらせん導体とは全く異なる。

Fig. 8 及びFig. 9 に示した計算結果から、自己及び相互インダクタンスとも、ピッチ l_{p} が小さい場合は、単位長さあたりの巻数 n またはピッチ l_{p} を変数として扱える領域があり、ソレノイドの良く知られた公式が成り立つことがわかる。しかし、ピッチ l_{p} が大きくなると、ソレノイドの公式は成り立たなくなり、らせん導体として扱うことが必要になる。

更に、らせん導体の相互インダクタンスの式(39)、自己インダクタンスの式(44)と、らせんの折れ線近似によるインダクタンスの数値計算を比較して、らせん導体の軸長 l が長い場合、よく一致することが確認できる（37）。折れ線近似による数値計算で、長いらせん導体の「長い」の条件が明確になる。したがって、インダクタンスの計算において、解析的及び数値的計算手法は互いに相補的である。

5. まとめ

細いらせん導体と同じ巻半径のスリット幅が無限小のらせんスリットを入れた薄肉円筒導体を比較しながら、任意のツイストパラメータ $k (= \pm 2a l_{p})$ のらせん導体について得られたベクトルポテンシャル及び同軸らせん導体間の相互、自己インダクタンスの公式をTable 1 にまとめる。ただし、磁場は省略した。これより、長い密巻きらせんソレノイド（軸対称）の公式から直接、直線導体（並進対称）の公式は得られないが、磁場力の表式を含めて、直線導体と密巻きらせんソレノイドの良好知られた公式が、らせん導体（らせん対称）の公式の $(k \to 0$ 及び $k_{1}, k_{2} \to \pm \infty$ の) 2 つ極限として得られることがわかる。結果として、らせん導体の公式は複雑ではないが、長い密巻きらせんソレノイドから直線導体までの統一的な把握のために重要なことがわかる。従来、長い直線導体（並進対称）及びらせんソレノイド（軸対称）の公式では、巻ききらせん導体（らせん対称）で構成された単純な塗線の電磁場解析では、塗線の振動を無視して平行導体、またはらせん電流の離散的な分布を円筒上の連続的な分布のらせんスリット入り円筒導体と近似するしかなく、らせん形状を反映した計算はできなかったが、らせん導体の公式により、塗線の電磁場解析

Table 1	Comparison among a long thin straight conductor, a helical conductor and a closely wound solenoid of a single layer on the dependence of the twist parameter $k (= \pm 2a l_{p})$						
Parameter: k	Straight conductor	Helical conductor	Closely wound solenoid				
Pitch: l_{p}	$k \to 0$ (or $l_{p}^{2} \to \infty$)	$0 <	k	< \infty$ (or $\infty \to l_{p}^{2} = 0$)	$	k	\to \infty$ (or $l_{p}^{2} = 0$)
Symmetry	translational	helical	axial				
Lines of force	$A_{0}(r,\theta, z) = \text{const}$	$A_{0}(r,\theta, z) = k \cdot \text{const}$	const				
Mutual inductance	Eq. (43)	Eq. (39) (Eq. (34), $k=0$)	Eq. (34) (Eq. (33), $k \to \pm \infty$)				
Self-inductance	Eq. (46)	Eq. (44) (approximate)	Eq. (35)				
析が可能になる。ただし、得られた公式は、変形ベッセル関数の無限級数なので収束性について注意が必要になる。

付録 本論文で用いた数学公式

1) 周期的デルタ関数δ₁(x) のフーリエ級数展開

\[\delta_1(x) = \sum_{n=-\infty}^{\infty} \delta(x - nT) = \frac{1}{T} + \frac{2}{T} \sum_{n=1}^{\infty} \cos \frac{2\pi nx}{T} \] \hspace{1cm} (A1)

2) 長さ l (l > r) の長い直線電流のベクトルポテンシャル導出での積分

\[\int_{0}^{\infty} \frac{dz}{\sqrt{r^2 + z^2}} = \log(z + \sqrt{r^2 + z^2}) \approx \log 2l - \log r \] \hspace{1cm} (A2)

3) 直線状電流のベクトルポテンシャルの多極展開

\[\log \left[\sqrt{a^2 + r^2} + 2ar \cos \theta \right] \]

\[= \log a - \sum_{n=1}^{\infty} \frac{1}{a} \left(\frac{a}{r} \right)^n \cos n\theta, \quad r < a \]

\[= \log r - \sum_{n=1}^{\infty} \frac{1}{a} \left(\frac{a}{r} \right)^n \cos n\theta, \quad r > a \] \hspace{1cm} (A3)

4) 変形ベッセル関数Kn(x)の積分表示

\[K_n(\alpha x) = \int_{0}^{\infty} \frac{\cos(\alpha x) dx}{\sqrt{\beta^2 + x^2}}, \quad \alpha > 0, \quad \Re \beta > 0 \] \hspace{1cm} (A4)

5) 変形ベッセル関数の加法定理 \((r_1, r_2)\)

\[K_n(x) = \sum_{m=-\infty}^{\infty} J_m(2m \cos \phi) J_n(x) \cos(m\phi) \] \hspace{1cm} (A5)

6) 変形ベッセル関数の漸近展開

\[I_n(x) \approx \frac{x^n}{2^n \Gamma(n+1)}, \quad K_n(x) \approx \frac{2^{-1-n}(x)}{x^2}, \quad x \to 0 \] \hspace{1cm} (A6)

\[I_n(x) \approx \frac{e^x}{x^{2+n}}, \quad K_n(x) \approx \frac{\pi}{2x} e^{-x}, \quad x \to \infty \] \hspace{1cm} (A7)

参考文献

1) A. Gray: “Absolute Measurements in Electricity and Magnetism (2nd Ed.)”, MacMillan, London (1921) 475-527

