Introduction to Superconductivity
Chapter 3 : Phenomenological Theory
Taiichiro OHTSUKA
498-7 Mirokuji, Fujisawa 251-0016

Synopsis:
On basis of the Meissner effect, which assures the reversibility of the normal-superconducting state transition, thermodynamical relations describing the difference in superconducting and normal states were derived in the preceding chapter. In this chapter, a two-fluid theory is described where the free electrons in the superconducting state are assumed to be a mixture of superelectrons that flow freely without resistance and normal electrons that have Ohm resistance. The theory is phenomenological in that the property of the superelectron is based on experiment and the theory does not attempt to describe the nature and origin of the superelectrons.

Keywords: two-fluid model, Gorter-Casimir theory, London equations, penetration depth, classical skin effect

1. はじめに

これから現象論に入りたいと思います。現象論とは超伝導の発現機構はひとまず棚に上げ、あるモデルにのもとめてマクロ的観点から物理的考察を進めるもので、そのモデルというのは超伝導状態では自由電子は抵抗をもつ電子と抵抗をもたない電子が共存するとする二流体モデルです。前回までは、完全導電性とマイスナー効果にもとめてマクロ系に対する最も普遍的な物理原理である熱力学、電磁気学によって解析してきました。現象論は二流体モデルにもとめて、超伝導現象の中身を考察してのこうとするものです。
二流体モデルにもとづく現象論は幾つか発表されていますが、現在でも生き残って用いられているのは、ロンドン兄弟、F. LondonとH. Londonによるロンドン理論と旧ソ連のランダウとギンズブルグ（L.D. LandauとV.L.Ginzburg）によるGL理論です。この章では主として有名なロンドン方程式を導いたロンドン理論を述べます。

2. 二流体モデル

二流体モデルは臨界温度以下の超電導状態で電子は超電子と常電子に分かれると考えるモデルです。ここで超電子は抵抗を受けない自由電子で、常電子は常伝導状態同じオーム抵抗を受ける自由電子と考えます。超電子の数密度をn_sとし、常電子の数密度をn_nとします。超伝導体の自由電子の総数は超電導状態になっても変わりませんから、超電子密度と常電子密度を合わせた全自由電子密度nで

\[n = n_s + n_n \]

(3-1)

は一定です。絶対零度ではすべて自由電子が超電子に、臨界温度T_c以上は常電子になっていますとします。

\[T = 0 \text{K} \quad n = n_s, \quad T \geq T_c \quad n = n_n \]

超電子の素性は分かっていませんが、どちらも電荷を持った自由電子ですので、超電子の電荷をq、質量をm_sとし、常電子は普通に電気抵抗を持った電子ですので常伝導状態の自由電子と変わったところはないと考えて質量m_e、電荷eとしておきます。
超電子密度n_sを全電子密度$n = n_s + n_n$で割った
ものを \(\omega = (n_s/n) \) とすると、\(\omega \) は臨界温度 \(T_c \) 以上では 0 で、絶対温度 0K では 1 になります。この \(\omega \) を秩序パラメータ (order parameter) と呼んでいます。どうして秩序という言葉を使うのかというと、前回の熱力学的解析で示しましたように、超伝導状態になるとエントロピーが小さくなり、エントロピーが小さい状態は乱雑さの度合いが小さい、より秩序ある状態だからです。前回熱力学の考察で示しましたように、磁場がない状態で超伝導試料を冷却しますと、臨界温度でエントロピーは不連続的であるとなく、連続的に変化します。従って、秩序パラメータは臨界温度から温度の下降とともに \(\omega = 1 \) から連続的に変化し、絶対零度で \(\omega = 1 \) の値をとると考えられます。

この二流体モデルを初めて導入したのはライデンのホルター（Gorter）とカシミール（Casimir）です。序説で述べましたように、この 2 人はマイナー効果が発見され前に超伝導状態の熱力学的解析を行いましたが、マイナー効果の発見で超伝導の磁気的性質の可逆性が保証されたのを受けて、あらためて二流体モデルにもとづいた熱力学的解析を行いました。

いま超電子系と常電子系の自由エネルギー密度を \(f_s, f_n \) としますと、超伝導状態の全自由エネルギー密度は、

\[
f(T) = \omega f_s(T) + (1 - \omega) f_n(T)
\]

と表せるように考えられます。しかしこの式は平衡状態で秩序パラメータに対する変分が最小値をとる条件 \(\partial f/\partial \omega = 0 \) を適用しますと、得られる答えは \(f = f_n \) です。これは平衡状態で超伝導相と常伝導相が共存する条件に他なりません。このような状態は後で述べます特別な状態—中間状態—に現れますが、超伝導状態自体では超電子と常電子は独立な相を作っているわけではないのですので、あらためて超伝導相の中で自由エネルギーに対して常電子がどのように寄与するかを考える必要があります。現象論ではこれは実験に訴えるしかありません。ホルターらは自由エネルギーが超伝導状態の比熱の実験結果と熱力学的解析の結果を与えなければならない条件から超電子と常電子の寄与の割り振りを定めました。

これは大変興味ある議論で、前回述べた熱力学の関係式と臨界磁場の放物線則を用いて 1 つの答えを求めることができますが、多少煩雑であり、またホルターらの理論は現在いわば博物館入りをしていますので省略します。

二流体モデルを用いて、1950 年に熱力学的アプローチから画期的な現象論を展開したのが先に述べたギンスブルグとランダウで、現在も GL 理論として広く用いられています。一方、ロンドン兄弟はマイナー効果の発見を受けて 1935 年に、やはり二流体モデルの上にたてて電磁気学的アプローチから有名なロンドン方程式を導いています。GL 理論はロンドン理論以降に発展された新事実をとり入れていますので、また別の章で述べることにします。

3. ロンドン理論

3.1 ロンドン方程式

ロンドン兄弟の兄のフリッツ・ロンドンは二流体の理論物理学者で、水素分子の結合が水素原子の電子のとりとりによって生ずる交換エネルギーによっておきていることをハイトラーと 2 人で明らかにした人物です。ユダヤ人としてナチスの迫害を逃れてフランスにいたとき、ペンゼンのような非常に大きな有機物分子の反磁性が大きいのは、分子が大きいため電子軌道の面積も大きく、磁場によって誘起された分子軌道電流の反磁性磁気モーメントが大きいためであることを明らかにしています。

一方、弟のハインツ・ロンドンはどちらかといえば実験家で、当時極低温の研究の中心になっていったオックスフォードやケンブリッジ大学（いずれもイギリス）で超伝導の研究を始めました。そこからライデン（オランダ）に移った頃、マイナー効果の報告が出たのに興味を持ち、これが何かあるかということを兄とともに考え始めたのです。その思考の過程は非常に興味深いものです。

話はそれますが、電気抵抗がないということ（完全導電性）が超伝導の一番の基本的性質と考えていたライデンの研究者たちは主役はほかにもいる、しかも超伝導研究の中心と自身とともに認めていたライデン以外で発見されたことで、その実の思い出の資料によると、心中穏やかでない人たちもいたようです。

もちろんマイナー効果の発見によって完全導電性（抵抗 \(R=0 \) ）が臨界に下がったわけではなく、主役が 1 つ増えただけです。しかし抵抗ゼロは前に述べたように、非可逆的な磁気的性質を与え、マイナー効果は説明できません。そこでマイナー効果は、超伝導状態は試料が透磁率 \(\mu = 0 \) の完全反磁性状態に移ったことを示していると考えて、超伝導状態を理解しようとする試みも行われました。しかしこのモデルから完全導電性は説明できません。そこでロンドン兄弟は、
完全導電性と完全反磁性のどちらか一方から他方を導くことができないということとは、この2つの性質を共に表す1つの原理がなければならないことを示しています。ロンドン兄弟は先ず第1章で述べたオネスの永久電流の実験に注目しました。そこで述べましたように、この実験でオネスは端子を短絡した超伝導コイルにエネルギーを誘導効果に従って超伝導電流（真電流）が流れ、アンペールの法則に従って電場を発生することを確認しています。短絡した超伝導コイルは形状をともあれ、孔が貫通している超伝導体ですが、その孔をふさえて一例にした古典電磁気学が用い適用することもあれば、電荷を貫通している超伝導体ですが、その孔をふさげない例にした古典電磁気学が用い適用することもあれば、電荷を貫通している超伝導体ですが、その孔をふさげない例にした古典電磁気学が用い適用することもあれば、電荷を貫通している超伝導体ですが、その孔をふさげない例にした古典電磁気学が用い適用することもあれば、電荷を貫通している超伝導体ですが、その孔をふさげない例にした古典電磁気学が用い適用することもあることになります。ロンドンは考え、二流体モデルをとった考察を進めました。
二流体モデルで常電導は常電流、超電導は抵抗を受けない超電流をなっています。いま超電導の電荷をq、速度をv_nとすると、超電流密度は、

$$j_s = n_s q v_s$$

(3-2)

と表されます。超電導は抵抗を受けずに、電場Eによって自由に加速されますので、超電荷質量をm_sとしますとニュートン方程式より。

$$m_s \frac{dv_n}{dt} = qE$$

(3-3)

この式は超電流密度を用いて次式のように表せます。

$$\Lambda \frac{dj_s}{dt} = E, \quad \Lambda = \frac{m_s}{n_s q^2}$$

(3-4)

ここでΛは超電導の性質に依存する、現象論では明らかに係数で物質パラメータと呼ばれます。
超電導の実体は分かりませんが、常電導は臨界温度以上の常伝導状態における自由電子と同じ速度cで質量m_sをもつとし、速度v_nに比例する抵抗を受けるとしますと、運動方程式は、

$$m_n \frac{dv_n}{dt} = eE - \eta v_n$$

(3-5)

となります。この式は定常電流が流れている状態（$dN_n/dt = 0$）ではオームの法則を表しており、係数ηは電気伝導度cと$q = n_se^2/\sigma$の関係にあることをを表しています。

式(3-4)は定常的な超電流が流れている状態（$dj_s/dt = 0$）では超伝導体内の電場はゼロ（$E = 0$）になっていることを示しています。この状態では、常電導の運動方程式は、

$$m_n \frac{dv_n}{dt} = -\eta v_n$$

(3-6)

となります。この式は簡単に解けて、

$$v_n(t) = v_n(0)e^{-\eta t}, \quad \tau = \frac{m_n}{\eta}$$

(3-7)

を与えます。この解は超伝導体内の電場がゼロ、つまり超電流が定常状態に達した時から常電流がt秒でゼロになることを表しています。この時定数（緩和時間と呼ばれます）τは電気伝導度に逆比例するから求めることができます、たとえば銅では10^{-4}秒程度です。従って定常状態では常電流は瞬時に減衰し、流れているのは超電流だけになります。ただし時間的に変化する電磁場が加わっている場合には周波数によっては常電流も寄与する可能性があります。これについて後で述べますが、緩和時間が10^{-4}秒程度ですと無共電的な状態の非常に高い周波数の電磁波はないと常電流の寄与は見られません。

次に、孤立した超伝導体に磁場を加えた場合を考えましょう。磁場が一定値に達するまでの間はマックスウェル方程式、

$$\frac{\partial B}{\partial t} = -\text{curl} E$$

(3-8)

に従って電場Eが誘導されます。この誘導電場を用いると、式(3-4)は次のように表せます。

$$\frac{\partial}{\partial t} (\Lambda \text{curl} j_s + B) = 0$$

(3-9)

この式は電子が抵抗を受けず自由に加速されることがなく自由に加速されることを示すまたは誘導される式で、マイスナー効果が発見された1933年にドイツの電磁気学と磁性のベックナー（R. Becker）らが導いた式です。この式は左辺の（）内が初期条件から決まるいろいろな値をとり、一義的には定まらない定数であることを示しています。たとえば磁場ゼロで冷却した超伝導体に磁場を加えると、初期条件は$B = 0, j_s = 0$なので、括弧内の方程式は定数0の状態を保ちます。具体的には磁場を考えると超電流j_sが誘導されてきます。この電流は超伝導体内部から外場を遮蔽し、試料内部では$B = 0$の状態を保つように流れるということです。一方、一定磁場中で冷却して超伝導状態に落ちた場合の初期条件は$B = \mu_0 H$（外磁場），$j_s = 0$です。この状態からさらに磁場を下げていくと、超伝導体内の磁束密度を$B = \mu_0 H$に保つように超電流が流れます。同じ年に発見されたマイスナー効果はこのことを否定したのです。つまり磁場を加える経路（初期条件）によらず、超伝導体では一義的に定まる状態$B = 0$をとるということを示したのです。

508 低温工学
ベッカーらの式はマイスターディフィクスを説明できませんが、出発点である完全導電性を表す自由加速の式(3-3)は成り立っていなければなりませんので、もう少し解析を進めておきましょう。

式(3-9)はアンペールの法則を表すマクスウェルの式
\[\mathbf{H} = \mathbf{j} \]
を用いると、
\[\frac{\partial}{\partial t} \left(\frac{\mathbf{A}}{\mu_0} \text{curl curl} \mathbf{B} + \mathbf{B} \right) = 0 \]
と表せます。微分の順序は変えてもよいので、上式は次のようにも表せます。
\[\frac{\partial}{\partial t} \text{curl curl} \mathbf{B} = \frac{\mathbf{A}}{\mu_0} \]
ここでベクトルに作用する微分演算子の公式
\[\text{curl curl} = \text{grad div} - \nabla^2 \]
が加えている磁場 \(\mathbf{H} = \mathbf{B} / \mu_0 \) 表しますと、\(\text{div} \mathbf{B} = 0 \) ですので、上式は、
\[\frac{\partial}{\partial t} \text{curl curl} \mathbf{B} + \frac{\mathbf{A}}{\mu_0} = 0 \]
となります。ここで \(\nabla \) はラプラス演算と呼ばれていて、微分演算子で
\[\nabla = (\partial / \partial x) + (\partial / \partial y) + (\partial / \partial z) \]
を表します。いま Fig. 3-1 のように、表面が \(x = 0 \) にある \(yz \) 面で \(x > 0 \)
が超伝導体、\(x < 0 \) が真空としましょう。前回の講義で述べたように、磁場は超伝導体表面に平行でなければなりませんので、外場 \(\mathbf{H} = \mathbf{B} / \mu_0 \parallel z \) としますと、\(\mathbf{B} \)
は \(x \) 方向にしか変化していませんので式(3-11)は、
\[\frac{\partial}{\partial t} \text{curl curl} \mathbf{B} + \frac{\mathbf{A}}{\mu_0} = 0 \]
となります。この微分方程式は容易に解けて、

\[\frac{\partial \mathbf{B}(t)}{\partial t} - \frac{\partial \mathbf{B}(0)}{\partial t} e^{-ax}, \quad a = \frac{\mu_0}{\lambda} \]

(3-13)

の解をもつことは式(3-12)に代入してみれば分かります。この解は、外場の変化による超伝導体内の磁束密度の時間的変化が表面からおよそ \(\lambda / \mu_0 \) の深さまで及んでいることを示しています。

ベッカーらの式に現れる電流は、磁場変化によって誘導された電流で自由加速された超電導体と羅針電流（超伝導電流）が超伝導体内の磁束密度の変化を遮蔽していることを表していますが、前に述べたように非可逆的な磁化曲線を与え、一定磁場中で冷却し、試料を超伝導状態に持ってきたとき、磁場変化によって誘導される電流がないのに超伝導体内の磁束がゼロになるマイスナー効果は説明できません。これを説明するには超伝導体は完全導電性の他に完全反磁性（透磁率 \(\mu = 0 \)）の性質をもっていると考えなければなりません。この場合、超伝導体内で磁束密度がゼロになるような磁化の空間的変化による磁化電流が磁場を遮蔽していることになります。この完全反磁性モデルの上のうたって超伝導を理想化しようとする試みもなされましたが、このモデルでは抵抗ゼロ（電気伝導度 \(\sigma = \infty \)）は説明できませんので、完全導電性とは独立な性質ということになります。

このような磁場を加える経路によって磁場を遮蔽する電流の性格が違ってくるんですが、ロンドン兄弟はどちらも同じ状態（マイスターディフィクス）を表しており、「反磁性電流（磁化電流）と超伝導電流（真電流）と異なっている理由はなく、どちらも同じ1つの原理から導かれる」ものと考えたのです。前回の講義で超伝導体では真電流と磁化電流は見分けがつかないと述べましたが、このことを最初に指摘したのはボンド兄弟です。そして磁束密度 \(\mathbf{B} \) と超電流 \(j \) の時間変化に対し成り立つベッカーらの式(3-9)が時間変化でなく、\(\mathbf{B} \) と \(j \) 自体について成り立つ式がこの1つの原理を表す基礎方程式であると考えたのです。

\[A \text{curl} \mathbf{j} + \mathbf{B} = 0 \]

(3-14)

有名なロンドン方程式です。この式と \(j \) が抵抗を受けない超電流であることを表す自由加速の式(3-4)を合わせた式が超伝導状態を表すロンドン兄弟は考えたのです。

3.2. 磁場の侵入深さ

ロンドン方程式は前節の式(3-10)の磁束密度 \(\mathbf{B} \) と超電流密度 \(j \) の時間微分を \(\mathbf{B} \) と \(j \) の置き換えただけなので、Fig. 3-1 の配置では超伝導内の磁束密度自体が
式(3-12)の解(式(3-13))に従って変化することを表しています。

\[B(x) = \mu_0 H e^{-x/\lambda_L} \]
\[\lambda_L = \sqrt{\frac{A}{\mu_0}} \]
(3-15)

これは超伝導体内から磁場が完全に排除されているのではなく、表面から\(\lambda_L\)程度の深さまで侵入していることを表しています。\(\lambda_L\)を磁場の侵入深さと呼んでいます。その後の研究で磁場は必ずしも単純な指数関数に従って侵入しないことが明らかにされていますので、現在では式(3-15)に従って磁場が侵入するときの固有長さ\(\lambda_L\)をロンドン侵入深さと呼んでいます。サフィックス\(L\)はLondonの\(L\)です。

いまアンペールの法則\(j_\phi = \nabla \times \mathbf{H}\)を用いると、ロンドン方程式は次式のように表せます。

\[\frac{A}{\mu_0} \nabla \times \mathbf{B} - \mathbf{B} = 0 \]
(3-16)

一方、ロンドン方程式の\(\nabla \times \mathbf{B}\)をとり、再びアンペールの法則を用いると、超電流密度に対する式として上式と全く同じ形の式、

\[\frac{A}{\mu_0} \nabla \times \mathbf{j}_\phi + j_\phi = 0 \]
(3-17)

が得られます。この式は磁場が侵入している表面層と同じ深さの層に超電流が流れていることを示しています。

このようにロンドン方程式は超伝導体内に磁場が侵入することを示していますが、このことはずっと以前の1925年にオランダの有名な物理学者H.A. Lorentzの長女のド・ハース（de Haas）夫人が指摘していました。ド・ハース夫人は、磁場は超伝導体内から表面に流れする超電流によって遮蔽されていると考え、その場合遮蔽によって超伝導体内から排除された磁気エネルギーは表面を流れる遮蔽超電流の電子の運動エネルギーと釣り合っていると述べました。そしてこのエネルギーのバランスは表面電流がある深さ\(\rho\)の表面層を流れていなければならないと考えました。このエネルギーのバランスは表面電流がある深さ\(\rho\)の表面層を流れていればとされることを示したのですぐに、得られた\(\rho\)の表式はロンドン侵入深さと目し形のものでした。しかしこの結果は当時磁場は超伝導体内から完全に排除されていると考えていた彼オネスに気兼ねしてか、あまり説明していない学術誌に発表されたので注目されませんでした。

ここでロンドン侵入深さ\(\rho\)の大きさを見積もっておきましょう。式(3-4)で定義された物質定数\(A\)を用いますと、ロンドン侵入深さは、

\[\rho_L = \sqrt{\frac{A}{\mu_0}} = \sqrt{\frac{m_s}{\mu_0 B^2}} \]
(3-18)

と表されいます。いま\(m_s\)は電子の質量\((9 \times 10^{-31}\text{kg})\)、
温度\(T = 0\ \text{K}\)における超電子密度\(n_s\)を普通の金属の電子密度の程度\((\sim 10^{28}\text{m}^{-3})\)、電荷\(q\)は電子の電荷\((1.6 \times 10^{-19}\text{C})\)と同様であるとすれば\(\rho_L\)の値は\(10^{-4}\text{m}\)の程度になります。これは大体、実験から得られている侵入深さと同程度の値です。実験については後で述べることにしますが、測定された侵入深さ\(\lambda\)は臨界温度\(T_c\)に近いところでFig. 3-2のように温度の低下とともに急激に小さくなり、\(10^{-4}\text{m}\)程度の大きさにおちつくことが示されています。この結果は下記の式、

\[\lambda(t) = \lambda(0) \frac{1}{\sqrt{1 - t^4}} \quad t = \frac{T}{T_c} \]
(3-19)

でよく表されますが、この式は実験式で現象論からは導くことができません。この意味で侵入深さ\(\lambda\)には添字\(L\)を付けていません。

二流体モデルにもとづいた超伝導状態の熱力学的な考察は後に詳しく述べますが、ここでロンドン理論における磁気エネルギーの変化を考察しておきましょう。前回の議論で述べたように、一定温度で磁場を加えたときの内部エネルギー密度\(u\)の変化は\(du = HdB\)で与えられます。従って一定磁場\(H\)を加えたときの単位体積当たりの内部エネルギーの変化は、

\[u(B) - u(0) = \frac{\int_0^B HdB - \mu_0 H^2}{2} \]
(3-20)

で与えられます。いまFig. 3-1と同じように\(x = 0\)にある超伝導体表面\((yz\)面)と平行の\(z\)方向に外磁場\(H\)が加えられているとしましょう。磁束密度\(B\)は超伝導体内部\((x > 0)\)に向かって変化しており、\(y, z\)方向には変化していませんので、超伝導体内で磁束密度はロンドンの侵入層に従って侵入しているとすれば、全内部エネルギーの変化は式(3-20)より、

\[U(B) - U(0) = \int_{\Phi_0} HdB - \mu_0 H^2 \]
(3-21)

となります。ここで\(S\)は超伝導体の表面積、\(\Phi_0\)はボルゲ出です。\(z\)方向に加えられている磁場が侵入している領域では\(y\)方向に超電流\(j_y\)が流れています。式(3-17)
から分かるように、超電流は超伝導体内で磁束密度と
同じ法則 \(j_s(x) = j_s(0) \exp(-x/\lambda_s) \) に従って変化し
ています。いまマックスウェル方程式 \(\text{curl } H = j_s \) で \(j_s \) について変化し
て、

\[\int_0^\infty j_s \, dx = \lambda_s j_s(0) = - \int \frac{\partial H}{\partial x} \, dx \] (3-22)

従って、式(3-22)より磁場が内部から排除されたため
に生ずる磁気エネルギーの変化は、式(3-18)を用いま
すと、

\[\frac{\mu_0 H^2}{2} \lambda_s S = \frac{\mu_0 j_s^2 \lambda_s^2}{2} \lambda_s S = \left(\frac{1}{2} m_n \nu_n \nu_s^2 \right) \lambda_s S \] (3-23)

となります。これは超伝導体内部に磁場が排除され
たことによる磁気エネルギーの変化が表面層を流れる
超電子の運動エネルギーに等しいことを示しています。

ことに述べたD・ハース夫人は、このエネルギーバラ
ンスが成り立っていなければならないことから出発し、逆に侵入深さを求めていますのでロンドン侵入
深さと同じ形のものが得られていたわけですが、ロン
ンドン方程式はこのエネルギーバランスを自動的に満た
しています。

[交流磁場と古典電磁効果]

前に述べましたように、超伝導体に磁場を加えたと
きの磁場変化で誘導される電場によって常電流も加速
されます。磁場の大きさを変えると電流はゼロになり、
交流電流は10^{-1}s 程度の緩和時間で減衰します。従
って定常状態では常電流の寄与はありませんが、時
間的に変化する交流磁場を加える場合は定常状態
でも交流電流が誘導されます。緩和時間の短さから
常電流の寄与は10^{4} Hz 以上の赤外線領域以上の周
波数の電磁波を加えないと現れないと推定されます
が、交流磁場は磁化率や侵入深さの測定等に用いられ
ていますので検討しておき必要があります。

誘導電場がある場合、ロンドン方程式に従って流れ
る超電流 \(j_s \) とともにオームの法則 \(j_s = \sigma E \) に従って流
れる常電流も考慮しなければなりません。いま超伝
導体表面は \(x = 0 \) にある \(yz \) 面で磁場は \(z \) 方向に加えら
れており、電流は \(y \) 方向に流れているとしましょう。

前の Fig. 3-1 と同一配置です。用いる式は電磁誘導
とアンペールの法則を表すマックスウェル方程式、

\[\text{curl } E = - \frac{\partial B}{\partial t} \] (3-24)

\[\text{curl } H = j + \frac{\partial D}{\partial t} \] (3-25)

です。磁場が時間的に変化しているので一般には
変位電流 \(\partial D/\partial t \) も寄与しますが、詳しいことは省略し
ますが交流電磁場の周波数が10^{7} Hz（赤外線の周
波数）以下では変位電流の寄与は無視できるほど小さ
いので省きます。常電流 \(j_s \) の寄与も考えるので全電
流密度は二流モデルに従って \(j = j_s + j_n \) となります。

Fig. 3-1 の配置では \(x \) 方向に加えられている磁場
と \(y \) 方向に流れる電流はともに \(x \) 方向にのみ変化して
ますので、式(3-25)は (curl \(H \)) = - \(\partial H_s/\partial x \) と
なります。従って、

\[- \frac{\partial B}{\partial x} = \mu_0 j_s + \mu_0 j_n \] (3-26)

と表されます。この式で超電流成分 \(j_s \) はロンドン
方程式に従って流れており、Fig. 3-1 の配置では \(j_s \) に
\(y \) 方向で \(x \) 方向にのみ変化していますので、式(3-14)
より、

\[\lambda \frac{\partial j_s}{\partial t} = - B \] (3-27)

一方、常電流成分 \(j_n \) はオームの法則 \(j_n = qE \) に従っ
て流れますので、式(3-26)で、

\[- \frac{\partial B}{\partial x} = \mu_0 j_n - \mu_0 q E \] (3-28)

Fig. 3-1 の配置では \(E \parallel j_s \parallel y \) で \(x \) 方向にのみ変化して
おり、また curl \(E \parallel B \parallel z \) なので \((\text{curl } E)_z = \partial E/\partial x \)。
従って式(3-28)より、

\[\frac{\partial^2 B}{\partial x^2} = \mu_0 q E = \mu_0 \sigma \frac{\partial E}{\partial x} = - \mu_0 \sigma \frac{\partial B}{\partial t} \] (3-29)

従って、式(3-27)と合わせて式(3-26)より磁束密度 \(B \)
についての式として、

\[\frac{\partial^2 B}{\partial x^2} = \frac{\mu_0}{\lambda} B + \mu_0 \sigma \frac{\partial B}{\partial t} \] (3-30)

が得られます。いま、\(B = \exp(ikx - \omega t) \) とおいて式
(3-30)を解くと、

\[k^2 = - \frac{\mu_0}{\lambda} + i \mu_0 \omega \] (3-31)

が得られます。この式で \(\mu_0/\lambda \) は浸入深さの 2 乗の逆
数で10^{4} 以下と10^{6} の大きさを持っています。第 2 項
の寄与率 \(\sigma \) は代表的な金属では10^3～10^5(Ωm)^{-1}程度
であり、真空の透磁率 \(\mu_0 = 4\pi \times 10^{-7} \)なので、\(\mu_0 \sigma \) は大
きくても 10^{6} の程度です。従って第 2 項が第 1 項と同
程度の大きさになるのは、周波数が 10^{13} Hz の遠赤外
線を加えたときです。第 2 項が第 1 項の 1%程度の大

Vol. 34 No. 10 (1999) 511

511
きさをもつのはミリ波を印加したときですので、それ以下の周波数では無視でき、極限値を静電場を加えた場合と同じ則を従って超伝導体内に侵入します。

常伝導体の場合は超電流は存在しませんので、第2項のみになります。いま、

\[k = \sqrt{i \mu_0 \sigma o} = (1+i) \sqrt{\frac{\mu_0 \sigma o}{2}} \]
(3-32)

ここで虚数i=\sqrt{-1}の関係式(1+i)^2=2iを用いました。上式で実部は電磁場が表面から、

\[k^{-1} = \hat{\alpha} = \sqrt{\frac{2}{\mu_0 \sigma o}}, \quad B \propto e^{-i / \hat{\alpha}} \]
(3-33)

に従って減衰する解を与えます。これは常伝導体に交流電磁場を印加したときの表皮効果を表しておき、\(\hat{\alpha} \)を表皮深さと呼んでいます。一方、実部は電磁場が振動しながら減衰してゆくことを表しています。

いま\(\omega = 10^6 \)Hz, 電気伝導度は多くの金属が十分低温でも値\(1 \sim 10^{13} (\Omega m)^{-1} \)とすると、表皮深さ\(\hat{\alpha} \)は\(10^{-7}m \)程度になります。これは侵入深さより桁違いに大きいので、超伝導状態では交流電磁場でも極限値は超電流によって遮蔽され、常電流による表皮効果は現れません。このことはコイルに試料を挿入し、交流電磁場を加えたときのインダクタンスの変化に現れます。

試料が常伝導状態にあるときはコイルのインダクタンスは試料が挿入されていないときに比べて表皮効果によって遮蔽される電流の分だけ変化しますが、試料が超伝導状態に転移するとさらに遮蔽が遮蔽されるので、インダクタンスは極限値\(T_0 \)近傍の侵入深さの急激な変化（Fig. 3-2）を反映して急に変化します。このことは極限温度の測定にも利用されています。

4. 二流体モデルと自由エネルギー

前回の第2章で述べましたように、磁場を加えたときの単位体積あたりのヘルマノルツの自由エネルギーとギブス自由エネルギー変化は、磁場による体積変化は無視できますので

\[df = -SdT + HDB \]
(3-34)

\[dg = -SdT - BDH \]
(3-35)

で与えられます。前回と違ってここでは単位体積当たりの自由エネルギーを小文字\(f, g \)で表すことにして、大文字\(F, G \)は系の全体積にわたる積分をとったあとの自由エネルギーを表すのにとっております。

いま常伝導状態では\(B = \mu_0 H \)であり、超伝導状態では試料全体が磁場が排除されて\(B = 0 \)になっていて外磁場は一定に保たれているとすれば、磁場を加えたときの超伝導状態と常伝導状態の全ヘルマノルツ自由エネルギーの差は、

\[F(B, T) - F_0(B, T) = F_0(0, T) - F_0(0, T) - \frac{\mu_0 H^2}{2} V_s \]
(3-36)

となります。ここで\(V_s \)は超伝導体の体積です。ところで第2章で極限磁場\(H_c \)では自由エネルギーが等しくなることから、磁場がないときのギブス自由エネルギー差は、

\[G_0(T) - G_0(0, T) = -\frac{\mu_0 H^2}{2} V_s \]

とすることを示しました。磁場\(H = 0 \)のときはヘルマノルツ自由エネルギーは式(3-34)から分成するように同じ結果を与えます。しかしこれを用いると、式(3-36)は極限磁場\(H_c \)では常伝導状態と超伝導状態の自由エネルギーが等しくならなければならないので、\(-\mu_0 H_c^2 V_s \)の差は生ずる矛盾した結果を与えます。これは試料が超伝導状態から常伝導状態に移るとき、あるいは逆の転移のときに、試料内の電磁密度\(B \)がゼロから\(\mu_0 H \)（またはその逆）に変わるために、外場一定の条件を満たすには磁場源が仕事をしなければならな
平衡状態では全自由エネルギーは変分$\delta G = 0$とされると考えます。変分は微分演算と同じ理路に従い、積分と演算の順序を変えることができますので、磁気エネルギーの変分は、

$$
\delta \int_{V} \frac{B^2}{2\mu_0} \, dV = \int_{V \setminus \mu_0 H} \delta B dV
$$

となります。外場H_eは一定なので$\delta H_e = 0$です。問題は超電流の運動エネルギーの変分です。いま超電流

$$
j_s = j_{s} = \langle 2/\mu_0 \rangle \nabla B \cdot \nabla dV
$$

の形の式が現れます。ここで変分と微分演算は順序を入れ替えることができるので$\delta \int B \cdot dV = \int \delta B \cdot dV$とおきました。そこで以下は$\delta B$の$\int B \cdot dV$の形に変えておこうとすると、$\delta B = 0$になるように$\mu_0 j_s = \nabla \times B$を

$$
\delta j_s^2 = 2 \mu_0 \frac{\partial B}{\partial x} \cdot \frac{\partial \delta B}{\partial x}
$$

となります。これを用いまと、全体積にわたる積分

Fig. 3-3 Geometry for calculating the effect of
field penetration.
は、\(dV = dx dy dz\)なので、
\[
\int \frac{\partial B}{\partial x} \delta B dx dy dz = \int \frac{\partial}{\partial x} \left(\frac{\partial B}{\partial x} \delta B \right) dx dy dz
\]
\[
- \int \frac{\partial B}{\partial x} \delta B dxdydz
\]
(3-42)
この式の右辺第1項で先に\(x\)に対する積分をとりますと,
\[
\int \frac{\partial B}{\partial x} \delta B dxdydz
\]
の面積分になります。ここで\(S\)は試料の全表面を表します。ところが\(x=0\)と\(x=L\)にある表面で超伝導体内の磁場変化の勾配\(\partial B/\partial x\)が逆符号になっていることはFig. 3-3から明らかでしょう。従って\(x=0\)と\(x=L\)にある表面（\(yz\)面）にわたる積分（式(3-42)の第1項）はゼロになります。上式には現れていませんが、
\(xz\)面についても同じであり、また第2章で述べた境界条件で表面での磁場の垂直成分はゼロなので、\(xy\)面からの寄与はありません。従って、全表面\(S\)にわたる表面積分はゼロになり、ベクトル表示に戻ると式(3-45)は、
\[
\delta G = - \int \left[B + \frac{A}{\mu_0} \operatorname{curl} B \right] \delta B dV = 0
\]
（3-44）
と表されます。この条件が如何なる\(B\)の変化\(\delta B\)に対して満たされるためには、上式の[]内の式がゼロでなければならない。すなわち,
\[
B + \frac{A}{\mu_0} \operatorname{curl} B = B + \operatorname{curl} A j = 0
\]
（3-45）
この式はロンドン方程式に他なりません。つまりロンドン方程式は自由エネルギーが平衡状態で最小値をとることを保証していることになります。
あとで述べますように、ギンズブルク・ランドゥ理論はこの自由エネルギー最小の条件から出発しています。GL理論はロンドン理論の不備を考慮していますので、その前に次回からはロンドン方程式の応用と物理的意義、さらに侵入深さの実験から明らかにされたロンドン方程式の欠陥とその修正について述べることにします。

1) 萩原宏康：大塚泰一郎教授の「基礎講座 超伝導入門」によせて、低温工学 34 (1999) 102
2) 大塚泰一郎：「基礎講座 超伝導入門」のはじめにあたって、低温工学 34 (1999) 103
3) 大塚泰一郎：超伝導入門 第1章：歴史的発展、低温工学 34 (1999) 134
4) 大塚泰一郎：超伝導入門 第2章：超伝導体の電磁気学と熱力学、低温工学 34 (1999) 385