特集記事

粘土鉱物の対掌性

小暮敏博
（東京大学 大学院理学系研究科）

粘土化学と粘土科学の双方に深い洞察をもつ山岸先生にとって、題目のトピックスは大変興味のあるものではないだろう。先生は、私に関与した質問を何度かされたことがあるが、勉強不足なため先生のご満足のいく答えをお返しできたことが多く、今回の先生のご慶事を機にこの問題について少し考えてみたい。

分子に対して結晶にしてもその構造に対称心（center of symmetry）や鏡面対称（mirror symmetry）が無ければ、対掌性（chirality）を持ち、鏡像体（enantiomer）が存在する。このように知られた事実を層状物質としての粘土鉱物について考えると、その考察は二つに分けられるだろう。つまり対称面に規則正しい周期性をもった、いわゆる結晶としての粘土鉱物の対称性と、層を構成する粘土鉱物の結晶の基底面等において考えるべき粘土鉱物の単位層における対称性である。ここでは前者についてカリオライト、後者についてイオン体を例に述べる。ここで言う単位層とは 1：1 層あるいは 2：1 層といったいわゆる粘土酸塩の単位が異なる層の合成である。層間物質は含まないことになる。

層に平行な方向ではほぼ完全な対称性が実現される粘土鉱物あるいは層状珪酸塩鉱物が、単位層面における周期性をもつが、それは何の選択もない三次元の結晶となる。ところが一般的の粘土鉱物では、隣り合う層の間での相対的な回転や面内方向の条件の方向がそれぞれ数種類の“選択性”があり、これが層状鉱物の著しい層状不整をはるかに層間方向の周期性の欠如をもたらすともに、層間周期性をもつとしても、選択によって複数の結晶構造が現れる。これがよく知られたポリタイプ（polytype）であり、原理的にはポリタイプの数は無限に考えられるが、各単位層が構造内での“同一性”を持つ（研究者によってその呼び方は様々であるが）いわゆる standard polypect の数は、単位層の対称性にも依存して数〜数十に限られ、さらにその中でも実際に存在が確認されているものはさらに少ない。

これらの標準 polypect の属する空間群を考えれば、その結晶構造に鏡像体があるかどうかが判別できる。例えば三八面体型の 1：1 型層状珪酸塩の 12 個の standard polypect 中の 4 個には鏡像体がある。これらの鏡像体の多くはいわゆる右巻き・左巻きの関係にある。異なる空間群の表記となる（空間群としては同じものに数えられる）。一方カリオライトの場合はその空間群が 1 （あるいは C1），つまり単位胞に何の対称要素を持たないため、やはり鏡像体が存在する。その構造はカリオライトのすべての原子座標を反転すれば得られる訳であるが、Bookin らによってカリオライトの単位層（三し面体型 1：1 層）には十分な精度で三面体の空心を含む層間体が存在し、カリオライトの鏡像体はこの鏡間関係づけられる層間の 2 つの方向のずれの“二者択一”に対応することが示された。2005年山岸先生と筆者それぞれ亀田純博士は、結晶性の高い米国 Keokuk 産のカリオライト粒子を走査電子顕微鏡（SEM）と電子後方散乱図を用いて調べ、その自形結晶における側面の稜線の傾きが鏡像体の片方に対応していることを示した。3これに加えて、SEM 内で各カリオライト粒子の表面（polarity）を判別する手法を見つけ出せば、各粒子の対称性の判別が出来ることになる。しかしこの方法はいわばいよう試みも試みたが、結晶構造を解する手がけ出しに至っていない。一義的条件下を多く含む通常のカリオライトの試料では、この 2 つの鏡像体は一つの結晶の層間方向に数〜数十層のドメインとして明り返して存在することが、我々の高分解能透過電子顕微鏡（HRTEM）観察によって確認できている（図 1）。4 その 2010 年の論文では、このようなドメインを“enantiotermic twin”と呼んで見たが、これに対するコメントは未だ聞かれたあるが、
図2. cis-vacant型2：1層の模式図。実際の構造はこれよりもかなり歪んだものとなっていると考えられる。

かれない。

次に1：1層や2：1層などの単位層の対称性について考えてみたい。単位層がどのような対称要素をもつかは、一般には結晶としての粘土鉱物のX線構造解析等から求めた原子座標をと、判断しなくてはならない（但しリザライドの1/2や金雲母の1/2などでは結晶中の鏡面対称が、そのまま単位層にも共有される）。例えばオイラライトの結晶には対称要素が無いかが、その単位層には鏡面が存在するという结构の研究をと紹介した。最近我々は同様に三斜晶系の葉臓石（pyrophyllite1A）の2:1層でも、空面体サイトを通る鏡面が十分な精度で存在することを示した（ここで言う2:1層体の2:1層とは以下で述べるtr型である）。つまり（三斜晶系を含めこれらの一般的な1:1層でも2:1層自体は対称性を持たないと考えてよいであろう。これに対して2:1層体の2:1層の八面体中での1/3の空サイトの位置が、2つの水酸基が対角に配位したtransサイトではなく、水酸基一つの稜の端に配置したcisサイトとなっている2:1層の存在が提案された（図2）。これはcis-vacant型さらにに約してc221層と呼ばれ、これに対して白雲母などのtransサイトが空になっているものをtrans-vacant型。約してnt型221層と呼ばれる。このc221型の2:1層はnt型の組織面対称を持たず、単位層として鏡像体が存在することは明らかである。c221型2:1層の存在を最初に提案したのは、1971年のMérínがOberlinととらえるが、この構造の研究はロシアのV.A. Dritsを中心に精力的に進められた。彼らは結晶学的に予想される格子定数や原子座標から計算される粉末X線回折の実測との対応、熱分析における脱水酸基温度の違いなどもとに、モンモリロナイト、イライト、葉臓石等の中にはc221型が含まれていたり、c221型が支配的なものも存在することを明らかにした。しかし当然のことながらこれらの粘土鉱物は個々が微細なため、通常のX線構造解析はできず、例えば結晶中でどれほどの規則的にこの構造が実現されているのか、その他の鏡像体の存在はどういう状態になっているのかなどの詳細は明らかにされていない。

このc221型2:1層の存在を知った、これはHRTEMを使った粘土鉱物の研究の中で最も重要なものとなると考えた筆者が、Drits博士のもとにサンプルの供給をお願いしたのは、確かに2004年であったと思う。もちろん彼も喜んで同意して、その年の6月に山岸先生とも参加したCMSの年会でDrits博士の共同研究者D.K. McCartyから、c221型が多く含まれると考えられるイライトの試料を受け取り、早期観察に着手した。しかしフィルムに写るのは白雲母と同じnt型の単位層のコントラストばかり。つまりHRTEM像はc221型2:1層の存在をまったく示さなかった。その後の観察でも結果は同じで、その原因はつかみななかった。2006年に初めてモスクワを訪れたときは、c221型の2:1層は実際に存在しないのではないかと彼に言っていたが（見えないものを信じないという発想が東京屋には知らない立ち方についてののか）、彼もそれを笑ってそんなことは絶対あり得ない。XRDもTG-DTAも含めてすべてのデータはnt型の存在を示していると反論され、再び矛盾した実験結果の答えを求める事となった。

それが変わったのはモスクワから帰った数日後で、何の目的かよく憶えていないがナリウム雲母というパラナイトのHRTEM像を解析していたときである。TEM像に含まれる像歪みを補正しても、HRTEM像から得られる単斜晶系のパラナイトのβ角が、X線回折から報告された値に比べ1°以上異なっていることに気した。そして電子回折の結果を含め、HRTEM像としてフィルムに写っているのはパラナイトそのものではなく、それが脱水酸基化（dehydroxylated）されたものであることを突き止め、つまりパラナイトの脱水酸基化は大気中では500℃以上でなくては起きない、と電顕中の真空とHRTEM像を記録するための強い電子照射によってパラナイト（そしておそらく2:1八面体の2:1層をもつ別粘土鉱物も）の脱水酸基化が起きていたのである。一方Dritsらは、c221型の2:1層はその脱水酸基化によってtransサイトの存在を示し不安定になった。この八面体シート中のAlの再配列が起こってnt型に近いイオン配置と呼ばれることが判明しており、この二つの事実によって何故c221型の2:1層がHRTEM像として捉えられないことを説明することができた。これに類似したセラドナイトの実験結果ととくに、通常のHRTEM像では観察時の脱水酸基化がそれによくイオン配置の変化によってc221型2:1層が記録できないことをDrits博士と共著で2010年に報告したが、これは電子顕微鏡の研究におけるひとつの限界を示し、また電顕で見ている結晶構造
が決して真実とは限らないということを改めて知られた教訓的な論文となった。もちろん脱水酸基化を起こさないで如何に2八面体型2:1層のHRTEM像を取るのかという新しい研究の目標が生まれたわけだが、今後も研究に時間を見出して（ということを口実に）一休みの状態で、いつか時間をつくって再びこの課題に挑戦してみたいと思っている。

以上粘土鉱物の対掌性に関連した筆者のききやかな取り組みを述べさせていただいた。天然の粘土鉱物は2つの鏡像の割合が等しい、いわゆるラセミ体であることはずみをないかと思われ、一般にはその対掌性への関心はそれほど高くはなかったと知れない。また後半のcr型の2:1層については、表面化学において吸着表面として粘土鉱物を扱う研究者には面白い話題と思われることがそのようなことにお構いなく自分勝手な発表に終始してしまった。本稿が通常の学術論文ではなく、山岸先生受賞の特集記事のひとつということでご容赦いただければと思う。

参考文献