粒径効果の研究史

Toshio SUDO

14-27, Tsunashimadai Kohoku-ku, Yokohama 223-0054

1. はじめに

粒径は微細粒子の一つに重要である。粒径の大きさになると、いくつかの物理現象が変化し、この変化は1μm〜1mm の範囲で目立つことは、今日の常識になっている。しかし、その変化の実体、測定方法、実験結果において、依然として多くの問題が未解決している。物性に及ぼす粒径の影響の問題の出発点は、1871年の Thomson の式である。この式は、その後、一部に修正が加えられたが、その物理的な意味は、今日に生き、活用されていて、最近の文献に散見する Ostwald ripening の究極の決定になっている。のみならず、この式は、溶液、析出、結晶成長など、さまざまな物理化学的現象の基本的な見方を示している。今世紀もあとわずかになったこの機会に、一見世紀の科学技術の一つの底流として流れ続けてきた Thomson の式を源泉にして、粒径効果の解説を試みる。

2. Thomson の式

1871年に Thomson は次の式を示した。1)

\[\frac{RT}{M} \ln \frac{\rho_2}{\rho_1} = \frac{2\sigma}{\rho} \left(\frac{1}{r_2} - \frac{1}{r_1} \right) \] (1)

液滴とその蒸気の系に導入された式である。\(R \) は気体定数、\(T \) は絶対温度、\(M \) は分子量、\(\rho \) は液滴の密度、\(\sigma \) は液滴とその蒸気の界面エネルギー、\(r_1 \)、\(r_2 \) は液滴を球粒としたときのその半径で \(r_1 > r_2 \)。また \(\rho_1, \rho_2 \) はそれぞれ \(r_1 \) と \(r_2 \) の液滴と平衡にある蒸気圧である。

この式の導入は、原則的には、二つの系の間に考えられる思考実験によっていた。大滴と、それと平衡にある蒸気圧の系があり、一方で小滴と、
それと平衡にある蒸気の系がある。大滴の表面より、機械的に少量の部分を取り去って小滴へ移す。このとき自由エネルギーの変化がある。また大滴をけずり取る方法について、まず蒸発させ蒸気圧にして、これを小滴の近くに移し、そこで液化させて小滴に合体させる。このとき自由エネルギーの変化がある。上記の自由エネルギーの変化は等しい、ということから、(1)式が導かれたのである。

導入の過程で、無視し得る項は省略してあるので近似式であり、蒸気は理想溶液の法則に従うこと、σの値は粒径の変化によって影響されないという仮定が入る。

物理的の意味は、小滴と平衡にある蒸気圧は大滴のそれより大きいということである。この式の導入は、本来、二つの系に分けて、それらの系の間に考えられる思考実験に基づく結果であるが、一つの系の中にでも、混然とした「ゆらぎ」の状態で一時的に実現する。小滴の中には、自然に蒸発し、その付近にまた大滴があった場合には、この蒸発分は大滴の表面で凝縮し、大滴はますます大きくなり、小滴はますます小さくなる。言い換えれば、小滴を消費することにより大滴が太る、ということであって、Ostwald ripening の理念である。

水の中の気泡では、(1)式の符号は逆になり、\(r_1 > r_2 \) ならば \(\rho_1 > \rho_2 \) である。

大滴の表面が平面になれば \((r \rightarrow \infty) \)、小滴の半径を一般に \(r \) として,

\[
\ln \frac{\rho_0 (r)}{\rho_0} = \frac{1}{RT} \cdot V_m \cdot \frac{2\sigma}{r} \tag{2}
\]
となり、\(\rho_0 (r) - \rho_0 \) が小さいときは,

\[
\frac{\rho_0 (r) - \rho_0}{\rho_0} = \frac{1}{RT} \cdot V_m \cdot \frac{2\sigma}{r} \tag{3}
\]
と表すことができる。水について \(\sigma = 73 \text{erg} \cdot \text{cm}^{-2} \), \(V_m = 18 \) であるから, \(T = 298 \text{K}, R = 8.315 \times 10^5 \text{erg} \cdot \text{deg}^{-1} = 1.986 \text{cal} \cdot \text{deg}^{-1} = 0.0821 \text{l} \cdot \text{atm} \cdot \text{deg}^{-1} \) とすれば、\(r = 0.1 \mu\text{m} \) のときには,

\[
\frac{\rho_0 (r) - \rho_0}{\rho_0} = \frac{18 \times 2 \times 73}{8.315 \times 10^5 \times 298 \times 10^{-5}} = 0.01 \tag{4}
\]
となり，約1％の蒸気圧の上昇となる。

3. Ostwald-Freundlich の式

Thompson の式の物理的な意味を、溶液の場合にまで適用するよう一般化する試みは、1870年、W.Gibbs によって最初になされたが、その後、Ostwald は一つの式を示した。しかしこの式には係数の一つに不適切と思われる点があり、Freundlich は,

\[
\frac{RT}{M} \ln \frac{c_2}{c_1} = \frac{2\sigma}{\rho} \left(\frac{1}{r_2} - \frac{1}{r_1} \right) \tag{4}
\]
に基づいて、溶液中の粒径効果を示した。この式は(1)式の蒸気圧の代わりに密度を用いた式である。要するために(1)式の蒸気圧を、溶液の浸透圧とし、それに比例するモル濃度で置き換えることにより、(1)式が溶液にも適用し得る形になる。すなわち、(4)式の意味は、一つの固体物質 \(M \) はその密度を密度 \(\rho \) の溶液を、粒径の細かくなるほど大きくなる、ということである。平衡系では「ゆらぎ」の状態で大小の粒子が共存し、たまたま両者が接近しているとき、小粒のまわりの密度は大粒のまわりのそれより大きいために溶液は移動し、結局、小粒は消費され大粒はますます大きくなって生き残る、という Ostwald ripening が起こる、単位面積あたりの表面エネルギー \(\sigma \) の値は、(この式から得られる場合には) 固体物質と液との間の界面エネルギーではなくて、蒸気との間の値とみなするのが正当であろう。この式の導入については、粒子の形は球とすること、溶解物質は理想気体の法則に従うこと、\(\rho \) と \(\sigma \) は粒径の変化によって変わらないことが仮定されている、(1)式を変形して(2)(3)式を得た同様に、(4)式を次のように変形して用いる。

\[
\ln \frac{c_{01} (r)}{c_0} = \frac{1}{RT} \cdot V_m \cdot \frac{2\sigma}{r} \tag{5}
\]

\[
\frac{c_{01} (r) - c_0}{c_0} = \frac{1}{RT} \cdot V_m \cdot \frac{2\sigma}{r} \tag{6}
\]

\(A_mB_n \) の形で固体物質の化学式を表す場合には、溶解度積 \(K_S \) の比較ということになり,
\[\ln \frac{K_{s(r)}}{K_{s(0)}} = \frac{1}{RT} \cdot V_m \cdot \frac{2\sigma}{r} \]
(7)

となる。

(4)式は Ostwald-Freundlich の式と呼ばれる。この式は、力のダイオメンシオンを持つ項の等式に変えられ、また、エネルギーのダイオメンシオンを持つ項の等式にも変えられる。さらにその式は、二つの独立平衡系の比較の結果得られる事実の一部を示していると同時に、一つの非平衡系の中で起こる連続的変化の一部の挙動をも示している。

[付記] 溶質の溶媒に対する溶解は、溶質と平衡にある蒸気を溶媒に溶けることであるから、(4)式の \(\sigma \) の値は、気-固態界面に関する値とみるのが原則である。しかしこれは過程の分析によるもので、現実にこの \(\sigma \) の値は液-固態界面エネルギーの値を示すものとして取り扱われている。

4. 溶解度

物質の粒径を実測し、その変化に依存する溶解度の変化を実測し、(4)式によって、単位面積あたりの表面エネルギー(表面張力)の値を出すことがまず行われた。

実験の原則に従って、従来の方法と同じように、新鮮な表面で囲まれている純物質を磨き、そのまま新鮮な表面で囲まれた微粒として溶媒に溶解させて真空の容器をつくることである。しかしこの原則を満たすことは容易ではない。いろいろな実験の発生が予想される。微粒(特に乾燥)によって、粒子の表面は非晶質の膜で覆われる。溶解した粒子間に会合が起こり、一部に錯壊などで形成される。溶解した粒子、イオンが粒子の表面に吸着する。粒子の表面は水、溶媒層で囲まれることがある。一方では、磨きられた粒子の細分もコロイド粒径の範囲(直径1-100nm)に入った。その分散液は「コロイド溶液」と呼ばれている。真の溶液と「コロイド溶液」の区別方法は明らかにされ、比較的近似には従来、「親水コロイド」と呼ばれていた物質、分子の真の溶液であることが示された。しかし粒径の面からみると、巨大粒子の大きさ、物によって、いわゆるコロイド粒径の下限部分と重複する。さらに溶解し易い部分がまず溶解して、残った部分は残渣となって粒子の表面を取り囲むという incongruent な溶解過程もある。

溶解成分の分析は重量法によって行われていた。溶解の成分は定量を示すことがあったが、電気伝導度測定による方法も今世紀の初頭から広く用いられていた。粒径として示されている値は、いまだてもなく、粒子分布の平均値である。今世紀の初頭頃、粒径値は光学顕微鏡による観察によって、その後、X 線の回折バンドの半減幅、遠心分離、その他が利用されるようになった。

以上は歴史的の一般的な事項であるが、1901年に Hulett が CaSO₄, BaSO₄, HgO について、水に対する真の溶液の作り方を報告し、濃度を電気伝導度より実測し、\(g \cdot \sigma \) の単位に換算し、粒径を光学顕微鏡観察より求め、それらの結果を(4)式に適用して単位面積あたりの表面エネルギーの平均値を求める。ここで真の溶液の作り方というのは、それをつくる過程で生じるいくつかの妨害を極力避けるために、こくりつ作りの方法であるが、かくはんは過ぎて後返し、肉眼的見で全く透明な液を得るという特異的な操作に過ぎない。その結果、たとえば BaSO₄ の例では、粒径(形状とみなして直径とする)が 1.8μm のときは 2.92 mg/l という値、また 0.1μm のときは、4.15 mg/l という値が示されている。

1913年に Jones は、コロイド腐食のような電解質溶液に(4)式を適用する場合には、電解度補正が必要であることを指摘し、Ostwald の稀釈律を一般化した稀釈式を用い、補正項 \(f' \) を導入して(4)式を次のように示した。

\[\frac{RT}{M} \cdot f' = \frac{2\sigma}{\rho} \left(\frac{1}{r_2} - \frac{1}{r_1} \right) \]
(8)

この \(f' \) 项は、解離分子数 \(n \)、また余圧 \(m \)、さらに、\(r_1, r_2 \) に対応する電極度 \(a_1, a_2 \) を含み、かなり複雑な形になっている。ついて Jones は、Hulett の示したアドミッタンス (単位は mho・cm⁻¹) の値その他のをそのまま用い、グラフの上で外挿して無限稀釈度の場合の伝導度 \(\Lambda_m \) を求め、\(n, r_2 \) の粒径粒子の電極度 \(a_1, a_2 \) を求めた。その結果、例えば BaSO₄ の場合には、\(M = 233.42, \rho = 2.15, \) など。
1.0537 となるので、$R = 8.315 \times 10^7$ erg, $T = 298$ K として、

$$
\sigma = \frac{R \cdot T \cdot f \cdot \rho}{2M} \left(\frac{1}{r_2} - \frac{1}{r_1} \right) \\
= \left(\frac{8.315 \times 10^7 \times 1.0537 \times 298 \times 4.50}{2 \times 233.42} \right) = 1300$ erg \cdot cm$^{-2}$
$$

となる。

1923年にDundon[5]らは、元来、$(RT/M) \ln (r_2 / r_1)$ の項は、溶液の 1 モル当たりに対する浸透圧の仕事を意味しているから、Jones の複雑な補正式を用いなくとも、浸透圧に対する補正として、van't Hoff 係数 $1 + a(n - 1)$ (a は電離度、n は生じるイオンの数) を(4)式に

$$
(1 - a + na) \frac{RT}{M} \ln \frac{c_2}{c_1} = \frac{2\sigma}{\rho} \left(\frac{1}{r_2} - \frac{1}{r_1} \right)
$$

のように組み入れた式で間に合うことを報告した。ただしこのときには、電離度 a は、a_1 と a_2 の間で平均値として一定していることを仮定している。BaSO$_4$ の σ を(8)式を用いて計算してみると（原報文には記されていないが）約1400erg \cdot cm$^{-2}$ となる。

以上述べてきた問題はすべて(4)式ならびにそれの補正式に基づいて、粒界効果から界面エネルギーの値を求めることにある。もっとも(4)式の成立のためには、質量作用の定律が成り立つという条件がある。しかしこの条件は、Ostwald の稀釈律の K の実測値が一定にならないという事実から保たれていないうちのための補正はよく知られているように、1923年に発表されたDebye とHückel による6活量係数による濃度補正が必要になる。

6. Schindler の式

Schindler7らは、形状因子 ϕ を導入して、(7)式を次のように示した。

$$
\log K_{Sl(0)} - \log K_{Sl(0)} = 0.2895 \cdot \frac{1}{RT} \cdot \frac{M}{\rho} \cdot \frac{1}{d} \cdot \sigma \cdot F \quad (10)
$$

$$
\log K_{Sl(0)} - \log K_{Sl(0)} = 0.2895 \cdot \frac{1}{RT} \cdot \sigma \cdot F \quad (10')
$$

この式の意味は次の通りである。これまでの成式には、粒子形状は球としてきた。このことを、ここでも隠蔽し、粒径として半径 r の代わりに直径 d を用いる。一般に体積 V を、$V = l \cdot d^3$ とし、表面積 S を $S = k \cdot d^2$ とすれば、形状因子 ϕ は、$\phi = k/l$ で示され、球の場合では 6 である。したがって自然対数を常用対数に変換させる係数を 2.303 とすれば、(2/3)/2.303 = 0.2895 の係数となる。

実測試料は ZnO, CuO, Cu(OH)$_2$ である。各試料の溶解度に対する粒界効果を調べる手段は、出来上がっている各試料を摩碎することではなく、合成条件をいろいろに変えるということである。各試料の粒径を、Scherrer の式 $\beta\cos \theta = 0.9\lambda/D$ (λ は単位幅、θ は X 線の回折角、λ はその波長) をそのまま用いて出す。またその「分子表面積」(F) を Buser-Graf の方法（原報文参照）により実測する。各試料粉末を、$pH=13.7, T=289$ K の水に溶かし、平衡状態に達したところで、溶液中の金属イオンを定量する。この実測値を対数形で表し、$d^{-1} \times 10^5$ (Å$^{-1}$) または $F(m^2)$ に対比させてグラフ上に記入し、各実測値の平均的位置を直線で結び、$d^{-1} \rightarrow 0$, または $F \rightarrow 0$ の極限値を求め、これを仮に $K_{sl(0)}$ と示す。この値を $pH=13.7$ と組み合わせ、$K_{sl(0)}$ の値として ZnO では -16.00, また CuO では -19.51 という値が示されている。その後 Baes et al.8 によって CuO(-20.4), Mann et al.9 によって ZnO(-16.89) が示された。直線の傾斜は粒径効果によるもので、ZnO では $d = 0.5 - 0.05 \mu m$ に対し、$\Delta K_{sl(0)} = 0.17$ の程度である。
て得たものの、または合成条件を異にしてつくられれたものであって、それらを、それぞれ、水に入れて溶解度を測定したとき、それらの値は、粒径の小さいものほど大きいということである。これらの式は大変簡略なものである。ある物質の溶解度の値には原則として粒径の記載が必要になるということになる。しかし物質の溶解度の表に示されている値には一般に粒径は付記されていない。これは粒径効果が現れるのは、きわめて細かい（0.1μm以下）範囲だからである。したがって表記の値は、原則として粒子表面の曲率（1/τ）が0に近づく場合、言い換えれば、液との接触面が平面とみなされる場合には、その粒子と平衡にある濃度である。このとき、原則として飽和濃度という言葉が用いられる。式(5)のσはそれである。c_rは、これに対し飽和濃度ことである。rはこの過飽和濃度を平衡にある粒子径である。

このように見ると、(4), (5)式には、一つの非平衡系中で起こる挙動の意味が含まれている。それは飽和溶液より出発し、その推移の過程でみられる胚核の出現→成長核の出現→結晶成長の経過である。

溶液より析出の状況は、表面積をつくるすために、外部よりなるされる仕事に対応して、新たに生じた表面に蓄えられる自由エネルギーの増加ΔG_f と、粒子の「自発的」成長に伴って、外部に生じる仕事に対応する自由エネルギーの減少ΔG_b とのかかわりである。

\[
\Delta G_N = \Delta G_f - \Delta G_b
\]

ここで ΔG_b は液－固相転移に伴うモル当たりのエネルギー変化量である。

最初は「ゆらぎ」の状態が生じる。たとえば過飽和溶液をつくるために、濃厚な成分溶液を混合する場合に、溶液内部の一時的な不均質によって、濃度、温度、分子運動などに「ゆらぎ」が生じ、偶発的に大小の粒子がうい時にできる。これらの「ゆらぎ」が安定に向け始めると、小粒の中心には消滅するものがあり、大粒の中心には、将来、成長を継続する、という資格を得るもののが残り、与えられた過飽和液は安定な状態に達し始める。このことは固－液相転移の活性化エネルギー曲線が頂上に来たということである。「ゆらぎ」の状態で生成する粒子を胚核と呼び、成長の継続を約束された粒子を成長核と呼ぶ。この成長核の最初の大きさは、\[\frac{d(\Delta G_N)}{dr} = 0 \] より

\[
r = \frac{2\sigma V_m}{\Delta G_v}
\]

である。この式は(5)式と同じで、(5)式的 r は成長核の半径（球とする）で、ΔG_v は

\[
\Delta G_v = RT \ln \frac{c_0(r)}{c_0}
\]

である。活性化エネルギーの大きさは(2)式を(0)式に入れて、

\[
\Delta G_N = \frac{16\pi^3 \nu^2}{3(kT \ln(c_0/r_0))^2}
\]

となる。\(\nu\) は「一分子」当りの体積、k は Boltzmann の常数である（1.38026 × 10^{-16} erg·deg^{-1}）。均一核成長速度 \(J_N\) は確率として、

\[J_N = A \exp(-\Delta G_N/kT) \]

で示される。

硫酸バリウムの場合に、\(\sigma = 1300\) erg cm^{-2}, \(c_0/r_0 = 10\) とすれば、(2)式より \(r = 0.02\) μm となる。

7. 結晶化圧

\[
\frac{RT}{V_m} \ln \frac{c_0(r)}{c_0} = \frac{2\sigma}{r}
\]

とし、左辺両辺は力のダイメンションを持ち、力の等式になる。結晶成長に基づいて、結晶が外部に及ぼす圧力は結晶化圧と呼ばれ、気機的風化の一要因と考えられている。

Correns(10) は左辺の項が結晶化圧を示すものと考えた。この項は次のようにしても導き出すことができる。荷重 L のもとで、結晶成長により、
一般に, 流速を \(u \) とすると, 1 塩素化物の濃度を \(C_1 \), 2 塩素化物の濃度を \(C_2 \) とし, \(C_1 / C_2 = 10 \) とする。それらを \(A \), \(B \) とし, これらを発生させると, \([A] = C_1 \), \([B] = C_2 \) となる。このように, 1 塩素化物と 2 塩素化物の濃度比を \(10:1 \) とする。すなわち, 反応が \(A \rightarrow B \) である。
Schindlerは実測値より、ZnOについて、Fの単位をm²として

\[
\log K_{SP} = \log K_{SO_3} + 9.0 \times 10^{-5}F
\]
\[
= -16.00 + 9.0 \times 10^{-5}F
\]
を示し、界面エネルギーを、\(R = 8.315 \times 10^7 \text{erg} \cdot \text{cm}^{-2}, T = 298.2 \text{K} \)として

\[
\sigma = \frac{9 \times 10^{-5}RT}{0.2895}
\]
\[
= \frac{9 \times 10^{-5} \times 8.315 \times 10^7 \times 298.2}{0.2895} \approx 770 \text{erg} \cdot \text{cm}^{-2}
\]
を示した。

各種の元素、イオン、化合物の熱力学的性質が実測、または計算されてきた。これらはたとえYatsuの著書に収録されている、粒径の影響を詳細に述べて出した値はほとんどないが、おそらく、その影響は、たとえば自由エネルギーの値の場合には、kJの単位以下の桁の変動値の中に含まれているものと思われる。しかし、これらの既知のデータは、熱力学的性質に関する性質を調べる場合、また、所定の物質について、新しく熱力学的性質の値を求めとする場合などに利用されている。

一般に、\(AB(s) = A^+(aq) + B^-(aq) \)の電解反応で、生成系の各物質の標準自由エネルギーの変化を\(\Delta G^0(\text{A}^+, \text{aq}), \Delta G^0(\text{B}^-, \text{aq}) \)とし、反応系のそれを\(\Delta G^0(\text{AB}, s) \)すれば、(18式の\(K_s \)は

\[
-\log K_s = \frac{\Delta G^0(\text{A}^+, \text{aq}) + \Delta G^0(\text{B}^-, \text{aq}) - \Delta G^0(\text{AB}, s)}{2.303RT}
\]
とる。Yatsuの著書12に収録されているデータの中で、たとえばBaSO₄、Ca²⁺、PO₄³⁻、Ca₅(PO₄)₃OH（スイサンリンカイ石）、OHの各標準自由エネルギー変化の平均値を求めるとき、\(\Delta G^0(\text{Ba}^{2+}, \text{aq}) = -559.38 \text{kJ} \cdot \text{mol}^{-1} \)（以下単位は同様）、\(\Delta G^0(\text{SO}_4^{2-}, \text{aq}) = -743.74 \text{kJ} \cdot \text{mol}^{-1} \)、\(\Delta G^0(\text{BaSO}_4, s) = -1358.94 \text{kJ} \cdot \text{mol}^{-1} \)、\(\Delta G^0(\text{Ca}^{2+}, \text{aq}) = -553.39 \text{kJ} \cdot \text{mol}^{-1} \)、\(\Delta G^0(\text{PO}_4^{3-}, \text{aq}) = -1061.04 \text{kJ} \cdot \text{mol}^{-1} \)、\(\Delta G^0(\text{Ca}_5(\text{PO}_4)_3\text{OH}, s) = -6338.42 \text{kJ} \cdot \text{mol}^{-1} \)、\(\Delta G^0(\text{OH}^-, \text{aq}) = -157.30 \text{kJ} \cdot \text{mol}^{-1} \)となる。

これらのデータより、BaSO₄=Ba²⁺+SO₄²⁻の反応では、\(R=8.315 \times 10^7 \text{erg} \cdot \text{deg}^{-1} \cdot \text{mol}^{-1}, T=298 \text{K} \)として

\[
-\{(559.38) + (743.74) - (1358.94)\} 10^1 \times 2.303 \times 8.315 \times 10^7 \times 298
\]
\[
= -9.8
\]
となる。スイサンリンカイ石では、Ca₅(PO₄)₃OH=5Ca²⁺+3(PO₄)³⁻+OH⁻として、\(\log K_s = -58 \)となる。しかし実例では、\(K_s \)の値は一定せず、実際はincongruentな溶解である、Ca₂⁺(HPO₄)(OH)₂の表面複合体が生成することが想定され、これによる補正を施して\(\log K_s = -55.42 \)という値が得られている。13

アルミニウム、鉄などを含むケイ酸塩の標準自由エネルギーの変化量を求める一つの方法は、やはり19式に基づいている。このときまず問題になるのは、シリカ、アルミニナ、鉄などの解離イオンの形式である、pH、温度、濃度がそれらの解離形式に影響を及ぼす。要するにアルミニウム、鉄のイオンと結びつく水分子の数の変化によって、いろいろな複合イオンが生ずることに基づいている。これらのイオンの熱力学的データ、安定液の源泉はSillénら（1964）14にあり、いま試料を粉末にして、水中で平衡状態になるまで保つ。造岩鉱物では平均20日前後を要する。生じた溶液中の各成分を分析し、溶液のpHを測定し、得られた濃度とpHと、その時の温度に似合う複合イオンの形式を探索して解離式を立て、たとえばカリノイドで

\[
\text{Al}_2\text{Si}_2\text{O}_3(\text{OH})_4+7\text{H}_2\text{O}=2\text{Al}(ext{OH})_4^-+2\text{H}_4\text{SiO}_4+2\text{H}^+
\]
でカオリノイドの標準自由エネルギーの変化量を求めるとして、これを\(\Delta G^0(\text{t}) \)とすれば、他の諸項の値は、既知の表によって、\(\Delta G^0(\text{H}_2\text{O}, l) = -56.72 \text{kcal} \cdot \text{mol}^{-1} \)（Wicksら、1963）、\(\Delta G^0(\text{Al}(ext{OH})_4^-, \text{aq}) = -311.3 \)（Ressmanら、1969）、\(\Delta G^0(\text{H}_2\text{SiO}_4, \text{aq}) = -312.8 \)（Ressmanら、1969）で与えられる。一方で分析で得られた濃度の実測値を、上式の各項の組
成のモル濃度にして表し，これをDebye–Hückelの方式で活量の値にする．最終的に8.19であるから，logKs = -37.8となる．R = 0.001986 kcal・deg⁻¹，T = 298Kとして(9式より)

\[\Delta G(x) = 2 \times (-311.3) + 2 \times (-312.8) - 7 \times (-56.72) = -902.7 \text{kcal} \text{mol}^{-1} \]

となる．1cal = 4.185×10⁷ergであるから，土に得られた値は-3777.8kcal・mol⁻¹となる．Yatsuの著書に(10)に収録されているカオリナイトの値の総平均値（34例）は-3778.1kcal・mol⁻¹である．

9. Ostwaldの段階の規則

高飽和溶液で，種結晶などを用いない，いわゆる均一核形成の過程では，多形相の中でも，その時のおおむね安定性の差が最初に析出する，というOstwaldの段階の規則は，多くの実例が知られてきた今日でも成り立っている．その後，Stranskiらの研究(20)を経て，今では，文字通り多形相の中の一員でなくても，同族結晶性化合物中の相対的に「不安定」な化合物，また同族化合物物質の中で「非晶質」な物質にも，この規則があてはまる場合が知られている．相対的に「不安定」な結晶性物質まで非晶質を仮にuで表し，これに対し，「安定」な結晶性物質をsで表せば，uはsに比べて溶度度は大きくなり，固-液界面張力は小さい．数値的な例示は省略するが，「非晶質リンカイ石(u)」，ブルシャイト(CaHPO₄・2H₂O) (u)，スイサンリンカイ石(Ca₃(PO₄)₂OH) (s)は一例である．

この規則の適合性を論じるにあたって，界面エネルギー，活性化エネルギー，粒径に加えpH条件も考慮しなければならないが，これらの条件の中一部を考慮することによっても，この規則の合理性を証明することができる．uはsに比べて溶度度が大きいということであるから，いま所定の過飽和濃度を基準にして考えれば，(10式のln(C₀(μ) / C₀) 値は，uの場合にはsに比べて小さいことに，しかしこの項は，式にあるように，界面エネルギーσの三乗と対比している．したがって，

sの場合に，高濃飽和比が，大きい界面エネルギーの値によってオフセットされるならば，uの活性化エネルギーΔGₛ(u)は，sの場合の値ΔGₛ(s)より小さくなることがあり，このような場合には，核形成度においてはJₛ(u) > Jₛ(s)となる．

Schindlerらは，粒径によって，反応の進行方向が逆転し得るということとも，段階の規則の意味であることを示した．たとえば，Cu(OH)₂ = CuO + H₂Oの反応式において，実測によれば，

\[K_s(Cu(OH)_2) = -18.48, \]

\[K_s(CuO) = -19.51 \]

であるから，(10')の式は，CuOについて，

\[\log K_s(Cu(OH)_2) = -19.51 + 8.0 \times 10^{-5}F \]

となり，Cu(OH)₂については，

\[\log K_s(Cu(OH)_2) = -18.48 + 4.8 \times 10^{-5}F \]

となって，R = 0.001986 kcal・deg⁻¹，T = 298Kとして，F(Cu(OH)₂) = F(CuO)と仮定すれば，

\[\Delta G = 2.303RT(-19.51 - (-18.48) + 0.32 \times 10^{-4}F) = -1.40 + 0.44 \times 10^{-4}F \text{kcal} \]

となる．\[\Delta G > 1.40 / (0.44 \times 10^{-4}) \approx 31800 \text{m}² \text{d} \text{に} \approx 4\text{nm} \] では，上記の反応は左へ進み，Cu(OH)₂が最初に析出することになる．

10. 摩碎効果

以上述べてきた研究史にみられる趣向は，原則として，粒径のみを細かくして，物理的な影響を調べることにあった．それに及んで，粒径を小さくするための方法，たとえば一例として摩碎に伴って発生するさまざまな功害を，できるだけ取り除く点に注意が向けられていた．しかし一方で，摩碎によって生じる液化の本質が何であるかという摩碎効果の研究がある．今日一般に承認されていることは，軽い，硬い，物質いかんによらず，摩碎によって粒子表面が非晶質化おおわれようになり，それが，表面積の増大効果と相まって溶解度，解離度，吸着能，イオン交換能などの増大を来すということがある．さらに物によっては，圧力効果による相転移が生じ新たな結合，応答過程が始まり，再び一部に粒子の増大が起こるのみならず，高圧性の物質粒子が生じる場合もある．これは基
礎のみならず広い応用面を持ち、日本では Saka-be, Shimazu, Hayashi らにより、石英の細胞毒性が摩耗により低下するという研究を初めとして、Takahashi の研究がある。摩耗効果の研究は本編では割愛したが、高橋、林の総説を参照されたい。

11. 視点

原則として「裸」（はだか）とみなされる微粒子の粒径と物性との関係を示すために、今世紀の初頭に提出された式には、力、エネルギー等の広い意味が含まれていて、興味を持ったので、この式を採用として話を進めてきた。その結果、今世紀において分かったことはなんであっか、ということになるが、すでに前半において、物性の上で目立った影響が現れるのは、0.01μm 以下であることが分かっていた。しかしその影響の程度は、しばしば測定誤差内で埋まる結果となって、本来の粒径効果という原則論は次第にすり替られたようにみえる。0.01μm の径は、明らかにコロイド粒径の範囲に入る。コロイド科学では、裸の粒子よりも、「衣」（ころも）をまとった粒子が常であり、衣の正体はなぜか、もっとも話題になり、熱力学においてさえ、界面相の解析が行われるようになった。さらに、今世紀を通じ、限られた数の研究者によって、熱力学的性質の新価が、実測または計算された。これは地道な研究であるが、しばしば、たとえば、自由エネルギーの変化量について 1kJ の桁で変動がある、一方で、大体の値で間に合う場合には、一例として結晶の単位胞の面を a² とすれば、低分子量、難溶性の電解質の界面エネルギーは a²σ = 10⁻²⁰〜2 ×10⁻²⁰ J と見積もある方法もある（このとき a = 3 ×10⁻¹⁰ m）。すべては、場合により切りである。しかしながら一方で、たとえば多形相の一例のホウケイ石やアラレ石では、前者の後者への変化過程で生じるエンタルピーの変化量は ΔH⁰ = 40cal・mol⁻¹、自由エネルギーの変化は ΔG⁰ = +250cal・mol⁻¹ の程度であることが知られている。化学結合のエネルギーについては、近年その高度な進歩をみることができるが、粒径効果の研究が次世紀に求めものである一に、熱力学的性質の数値の精査があるだろう。これは裸の粒子の粒径効果のみならず、界面相が粒の表面、粒の内部に及ぼすエネルギー的効果（たとえば保護作用の機構の本質）の解明にも必要であろう。

要約

(1) 粒径効果の研究の原点は、気-液境系では、理想気体を前提とする Thomson の式であり、液-固境系では、この式の蒸気圧を基準とし、理想溶液を前提とした Ostwald-Freundlich の式（O-F 式）である。
(2) O-F 式は、常備の溶液にも適用されるように補正して用いられるようになったが、その意味する性質は多様である。
(3) この式は、表面エネルギーを見積もるので用いられ、結晶成長核の大きさを意味する。力の等式とみることができ、これより結晶化圧が導かれる、また一方でエネルギーの等式もみることがでいて、これより標準自由エネルギーの変化が導かれる。一世紀を経た今日に至るまで、この式、たとえば、Ostwald ripening などを論じるときに用いられ、一研究史の底流となって流れ続けていく。
(4) 本編ではこの式を中心とする方法で、粒径効果の研究史の一端を解説した。

謝辞

文献の関係に終始協力していただいた国立国会図書館の渋谷正雄氏に厚く御礼申し上げる。また谷津栄寿教授の成書に収録されている熱力学的性質の数表の中で、数値を平均値として計算に使用させていただいた。同教授ならびに出版元、創造社に厚く謝意を表す。

文献

23) 高橋 浩 (1967) 粘土ハンドブック（第一版）339-369，日本粘土学会編，技報堂.