Alcohol consumption and risk of gastric cancer: The Japan Collaborative

Cohort study

Yuting Li¹, Ehab S. Eshak¹², Shirai Kokoro¹, Keyang Liu¹, Dong JY¹, Hiroyasu Iso¹, Akiko Tamakoshi³ and JACC Study Group

¹Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan

²Department of Public Health and Community Medicine Department, Faculty of Medicine, Minia University, Minia, Egypt

³Department of Public Health, Hokkaido University Graduate School of Medicine, Sapporo

Running title: Alcohol consumption and risk of gastric cancer

Number of figures and tables: 3 tables and 2 supplement tables

Word count: 233 words (abstract), 3,260 words (text)

Number of Reference: 51

Correspondence: Hiroyasu Iso, MD, Ph.D, MPH, Professor of Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita-shi, Osaka 565-0871, Japan.

Phone: +81-6-6879-3911; Fax: +81-6-6879-3919; E-mail: iso@pbhel.med.osaka-u.ac.jp
ABSTRACT

Background: Alcohol consumption is a potential risk factor for gastric cancer. However, findings from cohort studies that examined the relationship between alcohol consumption and gastric cancer risk among Japanese population are not conclusive.

Methods: A total of 54,682 Japanese men and women participating in the Japan Collaborative Cohort study completed a questionnaire including alcohol consumption information. The Cox proportional hazard model was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs).

Results: After a median 13.4-year follow-up, we documented 801 men and 466 women incident cases of gastric cancer. Alcohol consumption was associated with increased risk of gastric cancer among men (HRs in ex-drinkers and current alcohol consumption of <23g, 23-<46g, 46-<69g and ≥69g/d categories versus never drinkers were 1.82; 95% CI, 1.38-2.42, 1.41; 95% CI, 1.10-1.80, 1.47; 95% CI, 1.17-1.85, 1.88; 95% CI, 1.48-2.38 and 1.85; 95% CI, 1.35-2.53, respectively, and that for 10g increment of alcohol consumption after excluding ex-drinkers was 1.07; 95% CI, 1.04-1.10). The association in men were observed for cardia and non-cardia gastric cancer (HRs in the highest alcohol consumption category versus never drinkers were 9.96; 95% CI, 2.22-44.67 for cardia cancer, and 2.40; 95% CI, 1.64-3.52 for non-cardia cancer). However, no such trend was observed in women.

Conclusions: Alcohol consumption is associated with increased risk of gastric cancer among Japanese men, regardless of anatomical subsite of the cancer.
Keywords: gastric cancer, alcohol, JACC study
INTRODUCTION

Gastric cancer is one of the most common cancers in the world, and accounted for 754,000 deaths out of 8.8 million deaths in 2015 according to the World Health Organization estimates. Although the incidence and mortality rates for gastric cancer have declined worldwide since the middle of the 20th century, gastric cancer still has high incidence and mortality rates in Eastern Asian countries, where about half of the global gastric cancer load was located in.

Several cohort and case-control studies have shown that gastric cancer is associated with Helicobacter pylori (H. pylori) infection, lifestyle and dietary factors and genetics. Alcohol consumption was also reported as a potential risk factor for gastric cancer in some previous studies, but studies on relationship between alcohol consumption and gastric cancer in Japanese population, in whom alcohol is commonly consumed by Japanese men, are sparse and the evidence is still not clear, especially from prospective cohort studies. Results of some meta-analyses showed a significant association of gastric cancer only with heavy alcohol consumption (≥ 24 g or above per day), thus, the dose-response relationship between alcohol consumption and gastric cancer could be suggested.

The role of gender differences is still controversial. Clarifying the association of alcohol consumption with the risk of gastric cancer in men compared with women is particularly important since the prevalence of alcohol consumption in women is increasing. Moreover, gastric cancers at cardia (the proximal part of stomach
adjoining the esophagus) and non-cardia (the mid and distal stomach) sites may have different aetiology.16 Therefore, our study aimed to examine the sex-specific dose-response association between alcohol consumption and risk of site-specific gastric cancer among Japanese population.

MATERIALS AND METHODS

Study population

The Japan Collaborative Cohort (JACC) Study for Evaluation of Cancer Risks is a large prospective cohort study, the design details and subjects of this study have been described elsewhere.17 The JACC study was conducted from 1988 to 1990 and covered a total of 110,585 individuals (46,395 men and 64,190 women) aged 40-79 years in 45 study areas throughout Japan. The baseline information was collected through a self-administered questionnaire covering lifestyles and medical histories. Informed consent was obtained from participants or local community leaders. This study was sponsored by the Ministry of Education, Sport, and Science and approved by the ethics committees of Hokkaido University and Osaka University.

The incidence of cancer was available only in 24 study areas. Of total 65,042 individuals in these 24 areas, we excluded 277 participants with a medical history of gastric cancer and 10,083 participants who missed answers for alcohol consumption (include drinking habit, drinking frequency and/or drinking amount) at the baseline survey. This left a total of 54,682 participants (22,025 men and 32,657 women) for the
analyses.

Gastric cancer ascertainment

The median follow-up period for cancer incidence surveys was 13.4 years, because the follow-up surveys were discontinued in some study areas before 2009. For analysis, the incidence of gastric cancer was defined as the participants who developed gastric cancer or died of gastric cancer during the observed cancer incidence survey. Because some cases of gastric cancer could not be reported at the time of diagnosis, but the time of death, we counted those cases as incident cases to calculate the incidence. The incidence cancers were based on the records of population-based cancer registries, and the incidence data were coded by the 10th revision of the International Statistical Classification of Diseases and Related Health Problems. Tumors encoded by ICD-10 C16.0-C16.9 were classified as gastric cancers which were further classified as cardia (ICD-10 codes C16.0), non-cardia (ICD-10 code C16.1-C16.6), and unknown region (ICD-10 codes C16.8-C16.9).

Baseline Survey

A self-administered questionnaire was used to collect the baseline data including information about alcohol consumption, demographic, dietary and lifestyles characteristics. Subjects were asked if they were never-drinkers, ex-drinkers or current drinkers to classify their alcohol consumption status. Those who reported being ex-drinkers or current drinkers were also asked about the frequency of drinking per week (less than once/week, 1-2 times/week, 3-4 times week and almost every...
day), the age at starting drinking, type of alcohol (sake, shochu, beer, wine or whiskey), and the consumption per occasion in Japanese drinking unit (‘gou’). One (‘gou’) unit is equivalent to 23g ethanol. We calculated the daily alcohol intake as follows: the weekly alcohol intake frequencies were transformed into a daily drinking score then we multiplied the individuals’ scores by the amount of intake per occasion. In a subsample of 9732 women and 4969 men of the JACC study, the serum levels of gamma-glutamyl transferase (GGT) were used to validate the alcohol questionnaire. The sex-specific age-adjusted mean values of GGT were 15 IU/L in women and 20 IU/L in men for never drinkers, 18 and 26 IU/L, respectively for ex-drinkers, 17 and 27 IU/L for current drinkers of <23 g alcohol/d, 25 and 37 IU/L for current drinkers of 23-<46g/d. In the highest category of alcohol intake in women ≥46g/d, GGT was 48 IU/L; while in men who drank 46-<69g/d and ≥69g/d were 51 and 68 IU/L, respectively.18

Statistical analysis

This study was based on a statistical analysis of the sex-specific incidence of gastric cancer during the follow-up period from 1988-1990 to 2009. Person years were calculated from the date of completion of the baseline questionnaire to the date of incidence of gastric cancer, death, moving out of the community or the end of follow up, whichever came first. Baseline characteristics were calculated and presented as mean values (standard deviations) for continuous variable and proportions for categorical variables. We classified alcohol consumption into six categories for men
(never-drinker, ex-drinkers, current drinkers of light-to-heavy alcohol consumption: <23g/d, 23 to <46g/d, 46 to <69g/d or ≥69g/d) and five categories for women (never-drinker, ex-drinkers, current drinkers of light-to-heavy alcohol consumption: <23g/d, 23 to <46g/d, or ≥46 g/d). The hazard ratios (HRs) and the corresponding 95% confidence intervals (95% CIs) were calculated by using the Cox proportional hazard model for gastric cancer incidence across alcohol consumption categories. Potential confounding factors for adjustment were baseline age (continuous), family history of parents or siblings with gastric cancer (yes or no), body mass index (<18.5, 18.5-24.9 or ≥25.0 kg/m²), education level (primary school, junior high school, high school or college and higher), stress (too much, much, average or a little), history of stomach ulcer or duodenal ulcer (yes or no), smoking habits (never smokers, ex-smokers or current smokers), sport (seldom or never, 1-2, 3-4, and ≥5h per week), daily walking habits (seldom or never, <30 min, 30-59 min or ≥ 60 min), energy-adjusted intakes of salt, fat, vegetables, and fruits and the total energy intake (sex-specific quintiles). Missing values for these covariates were treated as additional missing categories and their indicators dummy variables were included into the model. The energy-adjusted intakes of selected nutrients were calculated by the residual method. The reproducibility and validity for dietary intakes of salt, fat, vegetables, and fruits have been reported elsewhere. P for homogeneity was calculated across all the categories (never-drinkers, ex-drinkers and current drinkers of 0- < 23g, 23- < 46g, 46- < 69g and ≥69g) by the log-rank test. P value for trend across the alcohol consumption
categories, excluding ex-drinkers was calculated by median alcohol consumption in each category. The 10g increase HR estimation was conducted after excluding ex-drinkers. We tested for possible interaction between alcohol consumption with sex, menopausal status and smoking status by including cross product terms of the variables that indicates the categories of alcohol intake multiplied by the variable that indicates the sex (0 and 1), menopausal status (0 and 1) or smoking habit (1 to 3).

In the analyses for the association between alcohol consumption and anatomical subsites of the tumor in men, we considered the highest intake category as ≥46g/d (combining 46 to <69g/d and ≥69g/d categories). A sensitivity analysis was conducted by excluding early incident cases of gastric cancer within the first 5 years of follow up. SAS Version 9.4 software (SAS Institute Inc, Cary, NC, USA) was used in all statistical analyses. Two-tailed P values of < 0.05 were considered statistically significant.

RESULTS

At baseline, the respective proportions of never-drinkers, ex-drinkers, and current drinkers were 21.3%, 7.5%, and 71.2% for men and 82.0%, 2.0%, and 16.0% for women. Compared with never-drinkers, male and female moderate-to-heavy drinkers tended to be younger, to have high perceived mental stress, to be current smokers, and to have lower intakes of fruits and vegetables. In general, history of peptic ulcer was reported among men more than women (Table 1).
Among the 54,682 participants (22,025 men and 32,657 women) aged 40-79 years at baseline examination and within the median 13.4-year follow-up period, we identified 1267 incident cases of gastric cancer (801 in men and 466 in women). Table 2 shows the sex-specific age- and multivariable-adjusted HRs for total gastric cancer among men and women according to alcohol consumption. Ex-drinkers showed a higher risk of gastric cancer compared with never drinkers in both genders (HRs were 1.82; 95% CI, 1.38-2.42 in men and 1.90; 95% CI, 1.15-3.14 in women). The risk showed a dose response pattern in male current drinkers groups compared with the never-drinker group (HRs were 1.41; 95% CI, 1.10-1.80, 1.47; 95% CI, 1.17-1.85, 1.88; 95% CI, 1.48-2.38 and 1.85; 95% CI, 1.35-2.53; P-trend<0.0001 for current drinkers groups from <23g/d to ≥69g/d, respectively, and that for 10g increment of alcohol consumption after excluding ex-drinkers was 1.07; 95% CI, 1.04-1.10). No such association was observed in women and the increased risk in female ex-drinker category lost its significance after excluding early gastric cancer cases that occurred within the first 5 years of follow up (Supplemental Table I); p-interaction with sex=0.076. Stratified analyses by menopausal status did not show significant different results for pre- and post-menopausal women (P-interaction>0.1); however, there were a few number of cases in postmenopausal women at higher alcohol intake categories (Data not shown).

The P for an interaction term of drinking habit and smoking status was >0.1 in age- and multivariable-adjusted models. However, we presented the stratified
analyses for the association between alcohol intake and risk of gastric cancer stratified by smoking status among men in Supplemental Table II. We could not present such stratified analyses for women or for risk assessment by anatomical subsites due to limited number of cases.

Table 3 indicates the result of the association between alcohol consumption and risk of gastric cancer according to its anatomical subsites in men. With reference to never drinkers (HRs for cardia gastric cancer were 5.89; 95% CI, 1.26-27.64, 7.20; 95% CI, 1.62-32.06 and 9.96; 95% CI, 2.22-44.67 in the current alcohol consumption categories of <23g/d, 23 to <46g/d and ≥ 46g/d respectively; P for trend=0.006. The respective HRs for non-cardia gastric cancer were 1.66; 95% CI, 1.10-2.51, 2.02; 95% CI, 1.38-2.95 and 2.40; 95% CI, 1.64-3.52; P for trend <0.001. However, the risk of unknown region gastric cancers was statistically significant in ex-drinkers and highest alcohol consumption category only (HRs were 1.59; 95% CI, 1.11-2.28 and 1.41; 95% CI, 1.05-1.90 respectively).

DISCUSSION

In this prospective study of Japanese men and women, we found that light-to-heavy alcohol consumption was associated with increased risk of gastric cancer morbidity in dose-response fashion among men after adjustment for potential confounding factors. Our result was consistent with the previous findings from case-control and cohort studies of Southern Americans, Europeans and Asians. The 2016 World Cancer
Research Fund International’s Continuous Update Project (CUP) report summarized the results from 30 prospective cohort studies and indicated that the consumption of ≥45 g ethanol/day (about 3 drinks a day) was associated with increased risk of gastric cancer (pooled RR 1.06; 95% CI 1.01-1.11). In that report, a 10 g increase in ethanol intake per day was positively associated with risk of gastric cancer in Asians (pooled RR 1.03; 95% CI, 1.01-1.04) more than other ethnicities (pooled RR 1.02; 95% CI, 0.98-1.06 among European and 0.98; 95% CI, 0.87-1.11 among North Americans), and in men (pooled RR 1.03; 95% CI, 1.01-1.05) but not in women (pooled RR 1.02; 95% CI, 0.90-1.15). The lack of association for women in the present study was consistent with the result of that meta-analysis, and could be due to the few cases in the current drinking categories. Moreover, several previous studies have shown alcohol consumption to increase the serum levels of female sex hormones from both ovarian and adrenal sources. Female sex hormones have been proved to protect against gastric cancer that might partially explain the null association in women.

However, a Swedish prospective study of 61,433 women aged 39-76 years reported that beer consumption but not total alcohol consumption was associated with increased risk of gastric cancer (HR 2.09; 95% CI, 1.11-3.93; p-trend=0.02) for >1 serving of medium-strong (2.8% alcohol)/strong (4.5% alcohol) beer per week versus zero intake, and (HR 1.28; 95% CI, 0.76-2.14; p trend=0.18) for ≥40 g total alcohol consumption per week versus never drinkers.

A systematic review of Japanese 11 cohort and 11 case-control studies indicated
that only one Japanese cohort study showed a significant association between alcohol intake and risk of gastric cancer (HR 3.05; 95% CI, 1.35-6.91) for drinkers of ≥50 ml alcohol per day versus non-drinkers, whereas other cohort and all case-control studies, included in that review, failed to detect any significant association between alcohol drinking and risk of gastric cancer. Shimazu et al. attributed the no overall association to the low statistical power in some studies, the misclassifications of ethanol drinking doses or frequencies in some studies that were not detailed in assessing drinking status, and the lack of adjustment for smoking and dietary factors in most of the studies.

Gastric cancers at cardia and non-cardia sites may have different aetiology. H.pylori infection is a common cause for atrophic gastritis, leading to both of cardia and non-cardia gastric cancers, while cardia gastric cancer is also caused from non-atrophic gastric mucosa which resembles esophageal cancer. As for the anatomical site of gastric cancer, three non-Japanese and three Japanese previous studies and two meta-analyses evaluated the association between alcohol consumption and the site-specific risk, but the findings were inconsistent.

Our results match those from the meta-analyses; one meta-analysis based on 17 cohort studies and 58 case-control studies estimated (pooled RR 1.19; 95% CI, 1.01-1.40; P=0.033) for non-cardia and (pooled RR 1.16; 95% CI, 0.98-1.39; P=0.087) for cardia gastric cancers. Also, in another recent pooled analysis of 20 studies that had 9,669 cases and 25,336 controls, heavy alcohol drinking (>4 drinks/day) compared to never drinking had pooled RRs (95%CIs) in both sexes combined for non-cardia
gastric cancer 1.28; 95% CI, 1.13-1.45 and for cardia gastric cancer 1.61; 95% CI, 1.11-2.34. Nevertheless, alcohol intake showed more robust associations with risk of non-cardia gastric cancer in non-Japanese studies. For example, the RR for distal gastric cancer (C16.2–16.6) was 1.3; 95% CI, 1.2–1.5 while that for cardia and upper-third gastric cancer (C16.0–16.1) was 1.3; 95% CI, 0.8–2.2 for ≥25 vs 0 g/d alcohol intake in a cohort study of 669,570 Korean men;22 the HRs for ≥60g alcohol/d vs zero intake in a cohort study of 521,457 Europeans men and women were 2.90; 95% CI, 1.53-5.48 for non-cardia and 1.19; 95% CI, 0.56-2.52 for cardia cancers;29 while in a Chinese case-control study of 1,124 cases and 1,451 controls of both sexes, the respective ORs for heavy alcohol consumption versus never drinking were 1.55; 95% CI, 1.07-2.26 for non-cardia and 0.84; 95% CI, 0.45-1.56 for cardia gastric cancers among men.28

On the other hand, the previous Japanese studies showed no association with any gastric cancer site in women, and mixed results for both cardia and non-cardia gastric cancers in men.30-32 Only one case-control study of Japanese men reported a strong positive association of proximal (cardia) gastric cancer for alcohol intake ≥1350 versus zero alcohol-years (OR 2.46; 95% CI, 1.17-5.17) and middle (non-cardia) gastric cancer (OR 3.29; 95% CI, 1.88-5.76) and distal (non-cardia) gastric cancer (OR 1.56; 95% CI, 0.86-2.84).32

We do not have a clear explanation why alcohol consumption in non-Japanese studies was associated with only non-cardia gastric cancer. The different magnitude of
The biologic mechanisms of alcohol commotion raising risk of gastric cancer are not well understood. However, several mechanisms have been addressed. First, the carcinogenicity of N-nitroso compounds (NOCs) especially from liquor is increased by alcohol. The volatile N-nitroso compound, N-nitrosodime-thylamine (NDMA) in beer, whiskeys and other hard liquor is found a potent carcinogen in animals. The cohort study of 61,433 Swedish women aged 39-76 years reported an increased risk of gastric cancer associated with high intakes of NDMA calculated from the consumption of each food item (included alcoholic beverages) [(HR in the highest (≥0.194μg/day) versus lowest (<0.041μg/day) quintiles of NDMA intake was 1.96; 95% CI, 1.08-3.58)]. Second, acetaldehyde is the metabolic intermediate of ethanol, which is recognized an animal carcinogen and as a Group 1 carcinogen (sufficient evidence of carcinogenicity in humans) by the International Agency for Research on
Alcohol-generated acetaldehyde in the stomach is removed by aldehyde dehydrogenase 2 (ALDH2) enzyme. The level of acetaldehyde elimination in the stomach can be affected by the polymorphisms in the genes encoding ALDH2. ALDH2 Lys allele which is common in East Asia, is an inactive polymorphism form of ALDH2 and the metabolism of acetaldehyde is significantly reduced. Alcohol consumption was positively associated with risk of gastric cancer for person with ALDH2 Lys allele, but not for those with ALDH2 Glu/Glu allele according to a recent Japanese case-control study of 1375 gastric cancer cases and 2050 controls. Acetaldehyde can also cause DNA damage in the digestive tract and may have several cancer-promoting effects by causing point mutations, impairing DNA repair, inducing sisterchromatid exchanges, inducing metaplasia of epithelium, and forming mutagenic adducts with DNA.

The strengths of our study were its community-based prospective design and the large cohort sample size with high response rate. Because we evaluated drinking habits before diagnosing gastric cancer, recall errors should not differ between cases and non-cases.

Our study also has several limitations; the main limitation relates to the lack of information on H.pylori infection for the total subjects, which is a strong risk factor for gastric cancer. However, previous Japanese and non-Japanese studies reported that alcohol consumption was not correlated with H.pylori infection and was independently associated with risk of gastric cancer. Second, although we made
adjustments for many potential confounders and stratified by anatomical subsite of the cancer, however, some confounding and other unmeasured factors such as a history of gastric surgery and nitrite intake remain unaccounted for. Third, because of difficulty distinguishing cardia and non-cardia in some cases, some inevitable misclassification could have happened.31, 51 Fourth, we had a number of gastric cancer of unknown region (n=11 for overlapping and n=423 for not otherwise specified) and the hazard ratios for that site of gastric cancer cannot be interpreted well.

In conclusion, our findings provide further evidence that alcohol consumption associates with increased risk of gastric cancer among Japanese men, regardless of the anatomical subsite of the cancer.
ACKNOWLEDGEMENTS

The authors would like to thank all the staff involved in this study for their valuable help in conducting baseline surveys and follow-up.

AUTHORSHIP

Members of the JACC Study Group: Dr. Akiko Tamakoshi (present chairperson of the study group), Hokkaido University Graduate School of Medicine, Dr. Mitsuru Mori, Sapporo Medical University School of Medicine, Dr. Yoshihiro Kaneko, Akita University Graduate School of Medicine, Dr. Ichiro Tsuji, Tohoku University Graduate School of Medicine, Dr. Yosikazu Nakamura, Jichi Medical School, Dr. Hiroyasu Iso, Osaka University School of Medicine, Dr, Kazumasa Yamagishi, Faculty of Medicine, University of Tsukuba, Dr. Haruo Mikami, Chiba Cancer Center, Dr. Michiko Kurosawa, Juntendo University School of Medicine Dr. Yoshiharu Hoshiyama, Yokohama Soei University, Dr. Naohito Tanabe, University of Niigata Prefecture, Dr. Koji Tamakoshi, Nagoya University

FUNDING

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (Monbusho); Grants-in-Aid for Scientific Research on Priority Areas of Cancer; and Grants-in-Aid for Scientific Research on Priority Areas of Cancer Epidemiology from MEXT (MonbuKagaku-sho) (Nos. 61010076, 62010074, 63010074, 1010068, 2151065, 3151064, 4151063, 5151069, 6279102, 11181101, 17015022, 18014011,
20014026, 20390156, and 26293138); Comprehensive Research on Cardiovascular and Life-Style Related Diseases (H26-Junkankitou [Seisaku]-Ippan-001 and H29-Junkankitou [Seishuu]-Ippan-003), JSPS KAKENHI Grant Number JP 16H06277, and Grants-in-Aid for China Scholarship Council (CSC file No. 201608050113).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES

13. Larsson SC, Giovannucci E, Wolk A. Alcoholic beverage consumption and

25.

41. Bosron WF, Li TK. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and

Table 1. Selected baseline characteristics of participants according to alcohol consumption categories

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Never-drinkers</td>
<td>Ex-drinkers</td>
<td>0-<23g</td>
<td>23-<46g</td>
<td>46-<69g</td>
<td>69g≥</td>
<td>Never-drinkers</td>
</tr>
<tr>
<td>No. at risk, n</td>
<td>4691</td>
<td>1662</td>
<td>4205</td>
<td>5423</td>
<td>4263</td>
<td>1770</td>
<td>26770</td>
</tr>
<tr>
<td>Ethanol intake, g/d</td>
<td>8.3±4.6</td>
<td>26.4±5.2</td>
<td>47.0±3.3</td>
<td>74.1±12.0</td>
<td>5.3±4.1</td>
<td>24.2±3.4</td>
<td>56.0±19.2</td>
</tr>
<tr>
<td>Age, y</td>
<td>60±11</td>
<td>63±9</td>
<td>57±10</td>
<td>56±9</td>
<td>54±9</td>
<td>54±9</td>
<td>59±10</td>
</tr>
<tr>
<td>BMI kg/m²</td>
<td>22.5±3.0</td>
<td>22.7±3.1</td>
<td>22.6±2.7</td>
<td>22.8±2.7</td>
<td>22.9±2.8</td>
<td>23.0±3.4</td>
<td>22.9±3.0</td>
</tr>
<tr>
<td>Family history of gastric cancer, %</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>History of ulcer, %</td>
<td>22</td>
<td>32</td>
<td>24</td>
<td>23</td>
<td>21</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Exercise 3h/wk, %</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Walking 230min/d, %</td>
<td>67</td>
<td>66</td>
<td>67</td>
<td>70</td>
<td>69</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>College or higher education, %</td>
<td>16</td>
<td>17</td>
<td>21</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>High perceived mental stress, %</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Current smokers, %</td>
<td>49</td>
<td>44</td>
<td>45</td>
<td>50</td>
<td>62</td>
<td>69</td>
<td>3</td>
</tr>
<tr>
<td>Selected nutrient intakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt intake, g/d</td>
<td>5.5±1.8</td>
<td>5.9±1.8</td>
<td>5.5±1.8</td>
<td>5.4±1.7</td>
<td>5.1±1.7</td>
<td>4.7±1.8</td>
<td>5.0±1.6</td>
</tr>
<tr>
<td>Fat intake, g/d</td>
<td>33±8</td>
<td>34±9</td>
<td>33±8</td>
<td>32±9</td>
<td>29±8</td>
<td>27±8</td>
<td>32±8</td>
</tr>
<tr>
<td>Food group intakes, g/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>250±301</td>
<td>275±311</td>
<td>245±298</td>
<td>238±301</td>
<td>219±299</td>
<td>187±293</td>
<td>298±321</td>
</tr>
<tr>
<td>Fruit</td>
<td>38±51</td>
<td>38±53</td>
<td>79±51</td>
<td>76±50</td>
<td>65±49</td>
<td>54±48</td>
<td>100±50</td>
</tr>
</tbody>
</table>

Means±SD deviations. Selected nutrient intakes and Food group intakes were energy-adjusted using the residual method.
Table 2. Sex-specific hazard ratios (95% confidence interval) of total gastric cancer according to alcohol consumption categories

<table>
<thead>
<tr>
<th>Alcohol consumption</th>
<th>Never-drinkers</th>
<th>Ex-drinkers</th>
<th>Current drinkers (per day)</th>
<th>P for heterogeneityα</th>
<th>P for trendβ</th>
<th>10g Increment of alcohol consumptionγ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-<23g</td>
<td>23-<46g</td>
<td>46-<69g</td>
<td>≥69g</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. at risk</td>
<td>4691</td>
<td>1662</td>
<td>4205</td>
<td>5425</td>
<td>4263</td>
<td>1779</td>
</tr>
<tr>
<td>Person-years</td>
<td>58351</td>
<td>17861</td>
<td>57077</td>
<td>71041</td>
<td>58196</td>
<td>23716</td>
</tr>
<tr>
<td>Case, n</td>
<td>123</td>
<td>84</td>
<td>140</td>
<td>200</td>
<td>186</td>
<td>68</td>
</tr>
<tr>
<td>Age-adjusted HR</td>
<td>1</td>
<td>1.91(1.44-2.52)</td>
<td>1.40(1.09-1.78)</td>
<td>1.53(1.22-1.91)</td>
<td>2.00(1.59-2.52)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)*</td>
<td>1</td>
<td>1.86(1.40-2.46)</td>
<td>1.41(1.11-1.81)</td>
<td>1.47(1.17-1.84)</td>
<td>1.84(1.45-2.33)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)**</td>
<td>1</td>
<td>1.82(1.38-2.42)</td>
<td>1.41(1.10-1.80)</td>
<td>1.47(1.17-1.85)</td>
<td>1.88(1.48-2.38)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. at risk</td>
<td>26770</td>
<td>653</td>
<td>4386</td>
<td>658</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Person-years</td>
<td>350923</td>
<td>7612</td>
<td>54492</td>
<td>7877</td>
<td>2339</td>
<td></td>
</tr>
<tr>
<td>Case, n</td>
<td>394</td>
<td>17</td>
<td>46</td>
<td>7</td>
<td>2†</td>
<td></td>
</tr>
<tr>
<td>Age-adjusted HR</td>
<td>1</td>
<td>1.97(1.21-3.21)</td>
<td>0.93(0.68-1.26)</td>
<td>1.00(0.47-2.12)</td>
<td>1.10(0.27-4.23)</td>
<td>0.013</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)*</td>
<td>1</td>
<td>1.88(1.14-3.10)</td>
<td>0.91(0.67-1.25)</td>
<td>0.98(0.46-2.09)</td>
<td>1.19(0.29-4.82)</td>
<td>0.013</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)**</td>
<td>1</td>
<td>1.90(1.15-3.14)</td>
<td>0.92(0.67-1.25)</td>
<td>1.03(0.49-2.20)</td>
<td>1.34(0.33-5.45)</td>
<td>0.013</td>
</tr>
</tbody>
</table>

α: p for heterogeneity was calculated across all the categories (never-drinkers, ex-drinkers and current drinkers of 0-<23g, 23-<46g, 46-<69g and ≥69g).
β: P for trend was calculated across never-drinker and current drinkers of 0-<23g, 23-<46g, 46-<69g and ≥69g after excluding ex-drinkers.
γ: 10g increment HR calculation was conducted after the exclusion of ex-drinkers.

*: Multivariable adjustment for age, smoking, BMI, family history of gastric cancer, mental stress, education level, history of ulcer, sport, daily walking habits, and total energy (sex-specific quintiles).
**: Further adjusted for salt, fat, vegetables and fruit intakes (sex-specific quintiles).
†: Combined the last two alcohol consumption categories.
P for sex-interaction in the final adjusted model=0.076.
Table 3. Hazard ratios (HRs) and 95% confidence interval (CIs) of cardia, non-cardia and unknown regions of gastric cancer according to alcohol consumption categories among men

<table>
<thead>
<tr>
<th>Alcohol consumption</th>
<th>Never-drinkers</th>
<th>Ex-drinkers</th>
<th>Current drinkers (per day)</th>
<th>P for trendβ</th>
<th>10g Increment of alcohol consumptionγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at risk</td>
<td>4691</td>
<td>1662</td>
<td>4205</td>
<td>5425</td>
<td>6042</td>
</tr>
<tr>
<td>Person-years</td>
<td>58351</td>
<td>17861</td>
<td>57077</td>
<td>71041</td>
<td>81911</td>
</tr>
<tr>
<td>Cardia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case, n</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Age-adjusted HR</td>
<td>1.00</td>
<td>9.89(2.05-47.65)</td>
<td>5.42(1.17-25.14)</td>
<td>6.61(1.50-29.13)</td>
<td>8.10(1.80-36.45)</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)*</td>
<td>1.00</td>
<td>9.11(1.87-44.38)</td>
<td>5.69(1.22-26.62)</td>
<td>6.86(1.54-30.47)</td>
<td>8.31(1.87-36.93)</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)**</td>
<td>1.00</td>
<td>8.76(1.79-42.76)</td>
<td>5.89(1.26-27.64)</td>
<td>7.20(1.62-32.06)</td>
<td>9.96(2.22-44.67)</td>
</tr>
<tr>
<td>Non-cardia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case, n</td>
<td>39</td>
<td>29</td>
<td>58</td>
<td>92</td>
<td>112</td>
</tr>
<tr>
<td>Age-adjusted HR</td>
<td>1.00</td>
<td>2.15(1.33-3.48)</td>
<td>1.72(1.15-2.59)</td>
<td>2.13(1.46-3.10)</td>
<td>2.57(1.78-3.72)</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)*</td>
<td>1.00</td>
<td>1.93(1.19-3.14)</td>
<td>1.68(1.12-2.54)</td>
<td>2.04(1.40-2.98)</td>
<td>2.39(1.64-3.49)</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)**</td>
<td>1.00</td>
<td>1.92(1.18-3.12)</td>
<td>1.66(1.10-2.51)</td>
<td>2.02(1.38-2.95)</td>
<td>2.40(1.64-3.52)</td>
</tr>
<tr>
<td>Unknown region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case, n</td>
<td>82</td>
<td>48</td>
<td>73</td>
<td>94</td>
<td>126</td>
</tr>
<tr>
<td>Age-adjusted HR</td>
<td>1.00</td>
<td>1.57(1.10-2.24)</td>
<td>1.15(0.84-1.57)</td>
<td>1.12(0.83-1.50)</td>
<td>1.56(1.18-2.07)</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)*</td>
<td>1.00</td>
<td>1.62(1.13-2.33)</td>
<td>1.18(0.86-1.62)</td>
<td>1.06(0.79-1.43)</td>
<td>1.38(1.03-1.85)</td>
</tr>
<tr>
<td>Multivariable HR(95%CI)**</td>
<td>1.00</td>
<td>1.59(1.11-2.28)</td>
<td>1.18(0.86-1.63)</td>
<td>1.07(0.79-1.45)</td>
<td>1.41(1.05-1.90)</td>
</tr>
</tbody>
</table>

*: Multivariable adjustment for age, smoking, BMI, family history of gastric cancer, mental stress, education level, history of ulcer, sport, daily walking habits, and total energy (sex-specific quintiles).
** : Further adjusted for salt, fat, vegetables and fruit intakes (sex-specific quintiles).
β: P for trend was calculated across never-drinker and current drinkers of 0-<23g, 23-<46g, 46-<69g and ≥69g after excluding ex-drinkers.
γ: 10g increment HR calculation was conducted after the exclusion of ex-drinkers.