北限地域寿都町管内のブナの立地環境と密な更新例

北海道大学地球環境科学研究院
北海道教育大学教育学部札幌校
後志森林管理署黒松内森林事務所

春木 雅寛・技術士事務所 森林航測研究
板垣 恒夫

並川 宽司・北海道環境科学研究センター
誠・寿都町 Club風の学校

鷲沢 隆彦

はじめに
寿都町管内は北海道の大和沢がブナ林分布の上で、日本における最北部にあたる(2,7)。また、中央部の黒川河口近くの湯別ブナ林は海拔20m(2)前後で北海道洞島半島において最も低標高分布地となっている(2)。著者らは昨年から同町管内におけるブナの更新について調査を行ってきた。調査個所は前述した湯別のブナ林更新地と寿都町では高標高分布地といえる月越山脈中央部のダケカンバ带下部に位置するブナ林線の林道法面地である。

ブナ更新に関しては、隔年にタネの豊作年をもち、陽光に対する耐陰性が高いが林内で更新は難しいこと、また、森林動物のリス、ノアズミ、ツサギ類、とくにノアズミ類による秋の食用のタネ集積に起因して、窓き忘れによる春の発芽、更新があることが知られている(1,4,5)。著者らは、寿都町管内では、伐採、表土除去など人為的なく乱によりできた陽光のよく入る林縁や道路法面さらに裸地で、タネの自然散布による育樹数密度の高い更新、また親木からの距離の長さから推定して上で生じた動物によるタネの集積と窓き忘れに起因したと考えられる稚樹幼木群の定着成長がみられ、いずれも将来上木となると思われるサイズに達していることを示した。このため、動物や人為的にも乱に起因した実生がどのような土壌環境で定着し育生していくか、またその後の程度に成長して、次代を担うのかはあまりよくわかっていない。今回まだ少数例であるが、このような更新例を拾い上げ、更新状況と立地条件の実態を明らかにしようと。

調査地
調査地の湯別温泉付近（海抜高約13m）は落葉広葉樹林の一角をなす、高さ2-2.5mの小沢沿いの台地上（調査地 Yy、以下同じ）に樹高20mに達するブナの成木や稚樹群が育生している。また、数百m離れた農道付近では、人為的に切り取られた裸地に隣接した落葉広葉樹林の林縁近くにブナ孤立状観木数本と後継木群（Yb1）がみられる。この裸地と斜面部法面（Yb1法）では樹高10mにおよぶカンバ類、キヤマハノキと混生してブナの更新稚樹群がみられる。また、これらの親木から111mを隔て、同様に人為的に切り取られた約0.25haの裸地（Yb2裸）と広葉樹林林線の法面（Yb2法）は、現在では樹高2-8mのカンバ類、カラマツなどが散在し草木類とともに地表を覆っている。その中には約2-20個体からなるブナ稚樹群の密に群が150m²の面積内に広がっている。一方、高海抜高地の月越山脈中央部ではダケカンパ＝ナガマツ＝マリダケラの下部に樹高18mに達するブナ＝ナガマツ＝マリダケ群がみられる。ここでは森林業者林道法面に数本のツツイタやヤナギ類を交えて樹高2mを超えるブナの稚樹が密に更新している（Tu）。いずれの法面、裸地も稚樹の樹高成長から7-10年を経ており、地表面は数cmの厚さの腐植物に覆われている（図1・表1）。なお、寿都町の年平均気温は8.5℃、年積雪量は544cm、年降水量は1164.3mmである。また地質は、湯別付近は新第三紀更新世の鍾・砂・粘土で構成される第2段丘堆積物で、地所の一部を地質く50cm以上の厚さの粘土層がC層となっている。月越山脈中は第三紀中新世台地の下部安山岩質火砕岩層となっており、火山凝灰岩架出の風化物がC層となっている（3）。

調査方法
調査地Tuでは2m×2mの小方形区を10m間隔で2個設定して育生する全ての樹木の木目調査を行った。他の調査区も育生する全てのブナの木目調査を行い、樹高(H)、胸高直径(D)を測定した。土壌については各調査地において、中央部に1か所を選び0-5cm、5-10cm、10-15cmおよび20-25cm深度の土壌採集を採取した。土壌試料は実験室に持ち帰り、無機栄養素量（NH4-Nはインドフェノール青法


Soil properties relative to dense regeneration pattern of Fagus crenata in Suttsu T., southwestern Hokkaido.
で、NO₃-N はカドミウム還元法で分析）、ガラス電極法で pH(H₂O)、灼熱減量（乾燥土をマッフル炉に入れ 500°C で 4 時間加熱し、減少重量×100%/乾燥土重で示す）、乾燥土に対する Total C(%)、N(%)、C:N 量（Yanaco,MT1600 CN コーダ使用）なども調べた。

結果および考察
1) 樹木のサイズ組成（図-2）、ブナ成熟林（YY, Ybi）のプナ個体の D-H 関係図に、他の種の被われ松（図では個体数の多い Yb2 法、Yb2 は綠松）の種が重ねると、後者は前者の D-H 関係にうまく乗っている。一方で、ブナ木（D17-43cm で H12-13cm で低い）から 111m 離れた法面、裸地状地で更新中のプナ稚樹をみると、どちらもごく約束面積で集中状態で育生していた。法面では高い面積で樹高 5-8m まで順調に成長中である。裸地状地でも枢立個体はみられず、樹高成長は順調とみられる。いずれの更新地の稚樹も、現在のこのようなる成長が続けば、いずれも将来上木になると考えられた。
2) pH(H₂O), 土壌灼熱減量, Total C,N(%)（図-4,5,6）：日本のブナ林土壌は一般的に酸性を示しているが (6), 各調査地とも地表に近いところではさまざまなが、深度 20-25cm で弱酸性 (5.5-6.0) ～ 酸性 (5.0-5.5) を示した。北限地の「大和の沢ブナ林」は中性附近であったが (2), 都市林内地の他にブナ林分布地では 0-25cm の深度では弱酸性～酸性となりそうだ。図示しないが、土壌有機含有量の指標とされる灼熱減量は土壌深度 10-15cm と 20-25cm では各調査地とも 6-12% の範囲で各調査地ともほとんど変化せず、樹木 (7cm) を除けば他は 11-18% の範囲で 0-10cm まで地表近くに多くあった。Total C,N(%) は Total C(%) に比べ Total N(%) がやや少なく、このため C:N 比は林内でもかなり高く、微生物活動に適しているといわれる 10 前後をかなり上回っていた。
3) 無機態窒素 (NH₄-N+NO₃-N) 量（図-7）：図示しないが、各調査地とも NO₃-N 量が NH₄-N 量の 2-3 倍であった。合計した NH₄-N+NO₃-N 量は図のように最も高い Yy でも約 7mg/kg で大和の沢ブナ林における 2007 年 8 月の 5 か所の土壤深度 0-45cm での 10-70mg/kg に比べてかなり低かった (2)。しかし、Yy は他地される更新地で順調な成長が実現されていることから、それぞれの調査地で成長に必要な窒素は供給されていると推察される。ただ、試料採取時期の違いが反映されたためか否かは今後さらに調査が必要であろう。

まとめ
1. 日本のブナ林土壌は一般的に 4-5 の酸性を示しているが、今回の都是都管内河川、月越のブナ更新調査地はいずれも弱酸性～酸性土壌を示していた。
2. ブナ種の更新は、低能動が河川に位置する小沢沿いの台地上ブナ内や人為的な裸地状地へのブナ立状林木からの自然散布による混在更新。また、親木からかかなり離れた落葉広葉樹林緣部の人为的な裸地状地や面沿上の、動物散布とみられる密集的なブナ稚樹の更新がみられた。一方、ブナ分布限界の高能動が河川においても、ブナ林缘部の生植被様式で自然散布による混在更新がみられた。
3. Total C,N(%) および成長に必要な無機態窒素量（表層の灼熱減量は成熟林（YY, Ybi）に比べ法面、裸地更地ではややや少ないが、そこでブナ種の成長は成熟林ブナの D-H 関係図に乗っ順調であることがわたった。

引用文献
(2) 桜幸愛（2005）北限地帯都管内のブナ林と土壌環境について、日林北支論 56: 95-97.
(3) 北海道立地下資源調査所（1981）5万分の地質図編 説明書（寿都）、32pp+地質図幅 1 枚。
(6) 大行政正隆（1951）ブナ林土壌の研究（特に東北地域のブナ林土壌について）。林野土壌調査報告 1: 1-243.
(7) 藤原（1948）ブナの地域性、生態学研究：11,1-2,1-4.
表1 各調査地の概要

<table>
<thead>
<tr>
<th>調査地</th>
<th>Yy</th>
<th>Yb1</th>
<th>Yb1法</th>
<th>Yb1裸</th>
<th>Yb2法</th>
<th>Yb2裸</th>
<th>Tu</th>
</tr>
</thead>
<tbody>
<tr>
<td>海抜高(m)</td>
<td>13</td>
<td>35</td>
<td>24</td>
<td>13</td>
<td>26</td>
<td>261</td>
<td>26</td>
</tr>
<tr>
<td>斜度(°)</td>
<td>0</td>
<td>-40</td>
<td>+290</td>
<td>0</td>
<td>+120</td>
<td>+7.5</td>
<td>+240</td>
</tr>
<tr>
<td>ブナ種樹個体数</td>
<td>24</td>
<td>10</td>
<td>18</td>
<td>39</td>
<td>28</td>
<td>42</td>
<td>9</td>
</tr>
<tr>
<td>本/100m²</td>
<td>8</td>
<td>33</td>
<td>54</td>
<td>65</td>
<td>28</td>
<td>14</td>
<td>225</td>
</tr>
<tr>
<td>観木群樹高(m)</td>
<td>19.3</td>
<td>13.2</td>
<td>13.2</td>
<td>13.2</td>
<td>-</td>
<td>-</td>
<td>17.5</td>
</tr>
</tbody>
</table>

図-3. 各調査地のブナ個体のD-H関係

図-4. 各調査地の深度別pH

図-5. 各調査地の深度別Total C

図-6. 各調査地の深度別Total N

図-7. 各調査地の深度別無機態窒素量