プナ、ミズナラ幼樹の誘導防御の経時変化

北海道大学大学院農学院
北海道大学大学院農学研究院
青山 千穂
小池 孝良

はじめに

名古屋で開催された第10回生物多様性条約締約国会議、通称COP10を2010年に控えますます生物多様性の保全が重要視されている。この生物多様性の保全を考える上で、欠かすことのできない要素の1つが生態系相互作用、特に植物の防御メカニズムの多様性というポトロームからの視点であると考えられている(2,7,8)。

植物の防御には、光合成の二次代謝物産を主な材料として葉を破壊したり、トゲやトリコム(毛状体)などを持つことにより捕食者が採食しにくくなる「物理的防御」と捕食者にとって不快な味や匂い、さらには有毒作用を持つことによって防御する「化学的防御」が存在する。

しかし、落葉樹の場合、防御と成長(主にリグニンの生成)は同じ物質代謝物産(フェルミナルイオン)を用いるため、トレードオフの関係が成立立つと考えられている(2,4)。つまり、防御にはコストがかかるので、防御ばかりしていると肝心の成長や繁殖が出来なくなってしまう。そこで、ある一定の防御(「恒常的防御(consitutive defense)」)と、更なる食害を回避するために食害が起こってから防御物質の生成を始める「誘導防御(Induced defense)」が存在する(6)。防御を最適限に抑えが必要に応じて起こす誘導防御は、コストからかかる防御に柔軟に運用することのできる効率のよい手段であると考えられている。

本研究ではこの防御の中でも特に、「誘導防御」を対象し、以下の2つの視点から研究を計画した。

まず1つ目は経時変化である。プナ、ミズナラ、シラカンバーの3種の樹種において、マイマイガによる食害処理を加え、夏の1度のサンプリングで防御の誘導実験を行った(7)。その結果、プナは全樹木の成長が増加していることが認められた。しかし、これによって誘導防御の応答速度や持続時間を異なると考えられるため、本研究では食害処理から10日ごとにサンプリング時期を細かく区切り、分析を行った。

2つ目は土壌中の養分条件である。一般的に植物の防御には葉内の炭素と窒素のバランスが密接に関係している。これをCarbonNutrientBalanceHypothesis:通称CNB仮説という(4)。加えて、褐色森林土では窒素が不足する場合があることから試験区を大きく2つに分け、窒素を加える試験区を設ける。土壌の窒素養分の違いが誘導防御の応答に及ぼす影響を追跡した。

以上より、本研究では食害される立場の樹木に焦点を当て、「誘導防御」という樹木が食害を受けてから誘導される防御について経時変化を追うこと、そして土壌の窒素養分が与える影響という視点から誘導防御を調べることにより、基礎的な知見の収集を行うことを目的とした。

材料と方法

本研究は北方生物圏フィールド科学センター札幌研究林実験苗畑で行った。土壌は褐色森林土である。使用した樹種は、冷温帯林の主要構成樹種であるプナ（Fagus crenata）、ミズナラ（Quercus mongolica var.crispula）の2種樹種を対象とした。両樹種とも7～9年生で、プナは樹高1.5～2m、ミズナラは樹高3～4mのものを用いた。なお、樹木の反復数は後述する。

本研究で行った処理は、以下の2つである。

1) 食害処理

これは、実際に捕食者に食べさせ、人為的に誘導防御を起こさせる処理である。開葉から10日後の5月上旬、外周から捕食者が入り込まないようにプナとミズナラの1個体当たり3枝に捕食をした。濃度率18%、0.4mmのしごめの寒天紙(三晃化学、札幌)をミシンで縫い、袋の1/2部分を針で留めた。開葉から30日後の5月中旬に春の食害を想定し、捕食者として広食性のマイマイガ（Lymatris dispar）の3齢幼虫を侵入し、シュートの個数を約20%食歯した6月上旬時点でマイマイガを取り出した。

2) 窒素処理

土壌中の養分条件、以下窒素処理についてである。試験地を大きく2つに分け、2008年5月上旬と2009年5月上旬の2年間にわたり、30kgNha^-1yr^-1の窒素を硫酸アソミウム（（NH₄)₂SO₄)によって付加した区、及び対照区を設置した。この数値の目安は近く関東東部の都市近郊で見られる窒素沈着量を目安としている(8)。

使用した樹種は処理ごとにそれぞれ4個体、計32個体を用意し、その個体の中から食害処理後10日（6月中）、20日、30日、40日、50日（8月上旬）と計5回、時間を追って葉をサンプリングした。このサンプリングで1個体の3枚の葉を採取した。なお、食害処理区のサンプリングした葉は、食害を受けた葉とした。

サンプリングした葉、1枚の葉から物理的な防御として葉の厚さの指標である単位面積当たりの葉重量、通称LMA(μg/cm²)と、残りの葉部分を化学分析用とした。LMA測定用に葉をリフハンチでディスクを打ち抜き、60℃のオーブンで2日間乾燥させた後、乾燥重量を測定しLMAを求めた。

Chihao AOYAMA (Graduate School of Agriculture, Hokkaido Univ., Sapporo 060-8589), Takayoshi KOIKE (Research Faculty of Agriculture, Hokkaido Univ., Sapporo 060-8589)
Temporal changes of induced resistance in saplings of Fagus crenata and Quercus mongolica var.crispula.
残りの部分は、凍結乾燥機（FLEXY-DRY,FTS systems,USA）で乾燥させ、ミルで粉碎した後、化学的な防護として炭素骨格の二次代謝産物である総フェノール量（g/g,Folin–Ciocalteu法,Julkunen–Titto 1985）と総含タンニン量（g/g,硫酸プタノール法,Bath–Smith 1977）を定量した。また、統計処理としてはRを用いてサンプリング時期ごとに食害処理と窒素処理を要因としたTwo-way ANOVAで解析を行った。

結果
対照区のみの比較では、すべての採取時期を通じて、ミズナラよりもブナのほうがLMAが大きく、総フェノール量は同程度だが総含タンニン量はブナのほうが多い結果となった。以下、樹種ごとに採取時期を追って結果を述べる。

【ブナ】
・LMA（葉の堅さの指標）
食害処理は20日後と30日後に有意な差がみられた。窒素処理の影響は30日後の傾向があったものの（p<0.1）も含め、すべての採取時期で有意な差がみられた（図1-1）。
・総フェノール量
食害処理は30,50日後に有意な差がみられた。窒素処理の影響はすべての採取時期で見られた（図1-2）。
・総含タンニン量
食害処理は20,30,50日後に有意な差がみられた。窒素処理の影響はすべての採取時期で見られた（図1-3）。

【ミズナラ】
・LMA（葉の堅さの指標）
食害処理は10日後のみ傾向（p<0.1）がみられた。窒素処理の影響は、20日後に有意な差がみられた（図2-1）。
・総フェノール量
食害処理、窒素処理ともに20日後のみ有意な差がみられた（図2-2）。
・総含タンニン量
食害処理は10,20日後に有意な差がみられた。窒素処理の影響は20日後のみに有意な差が見られた（図2-3）。

考察
ブナは処理20日後から防護処理が防護され、50日後まで持続傾向があること、また窒素処理のほうが防護は少ないが、誘導防護は明確な反応があらわれるものが示された。加えて、ミズナラはブナよりも窒素処理の差が現れないこと、また誘導防護が処理30日後には収束していることが示唆された。このミズナラの防護の収束は、ヤナギ（Salix cinerea）をハムス内も（Piratara vulgarissima）に食べさせ防護を誘導させた実験（3）でも、小研究と同様に30〜40日後にはトリコレンの生態が収束していることが確認されている。

これらの結果は、ブナは一斉開荒タイプで、一度集中すると当年度で新しい葉を出すことはほとんどなく、しっかりと恒常的な防護を施し、また防護が誘導されてもそれを続く場合によく葉を堅固に防護していると考えた。またミズナラは条件が良いと2次フラッシュをする柔軟な防御であるので、当年度の防護に柔軟に対応し、誘導され防護も当年度で収束させることでより効率よく防護をし、この考えが考えられる。

ここで、成長成長を考えてるとミズナラのほうがブナより窒素付加の影響が多いとの予測ができるが、ミズナラは今年の土壌条件が適していたためか、窒素付加した処理区と付加しなかった処理区の両方でたくさんの2次フラッシュが見られた。よって、当年度の窒素の影響がブナより少ないという結果が得られたと考えられる。

このように、生態的特徴によって誘導防護も樹種で差がある可能性が示唆された。今後の課題では、本研究では10日ごとに葉の採取を行った。しかし、ブナ（図1）やミズナラのLMA（図2-1）においては処理10日以降に何かの変化が生じている可能性がある。加えてミズナラの総フェノール量と総含タンニン量（図2-2,2-3）においては処理10日から30日における防護の誘導と収束の傾向をさらに詳しく検討していく必要がある。また、防護が誘導された個体は再度誘導されるときに一度目の防護とは異なりか、どんな特徴は見つかなかった。次年度も本研究を踏まえ、さらに研究をしていく予定である。

本研究を進めるとたてて科学調査費補助金（基盤研究B（原田光・小池孝良）の支援を得た、記して感謝する。

引用文献
(1) 青山千徳 (2009) 落葉広葉樹における誘導防護と開荒様式の関係。北方森林学報 50, 20度卒業論文
(2) 青山千徳・小池孝良 (2009) 樹木の誘導防護に関する研究の動向と今後の方向性。北方林業 61: 217-220。
(7) 大赤根之 (2003) 『生物多様性科学のすすめ』丸善、東京。
(8) 鑫谷いづみ・矢原徹一 (1996) 保全生態学入門、文・総合出版、東京。
図 1-1 ブナのLMA（単位面積当たりの葉重量）
図 2-1 ミズナラのLMA（単位面積当たりの葉重量）
図 1-2 ブナの総フェノール量
図 2-2 ミズナラの総フェノール量
図 1-3 ブナの縮合タンニン量
図 2-3 ミズナラの縮合タンニン量

すべての図でn=12。
プロットは平均値。エラーパーは標準誤差。
| 表1 図に関する Two-way ANOVA の統計結果。値はF値（*p<0.05,**p<0.01,***p<0.001,n.s.p>0.1）。n=12。 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | 10 日後 | 28 日後 | 30 日後 | 40 日後 | 50 日後 |
| ブナLMA食害処理 | 2.5879(n.s.) | 7.5602(*) | 4.999(*) | 4.106(n.s.) | 4.3361(n.s.) |
| 室素処理 | 20.3707(***) | 6.1961(*) | 20.4108(***) | 17.2094(***) | 4.7214(n.s.) |
| 食害×室素 | 1.8444(n.s.) | 0.8786(*) | 4.7658(*) | 2.2374(n.s.) | 3.8955(n.s.) |
| ミズナラLMA食害処理 | 4.5304(n.s.) | 1.5227(n.s.) | 0.0025(n.s.) | 0.0086(n.s.) | 0.0727(n.s.) |
| 室素処理 | 10.1477(***) | 6.9353(*) | 0.4777(n.s.) | 0.4032(n.s.) | 0.1924(n.s.) |
| 食害×室素 | 2.7458(n.s.) | 3.1566(*) | 0.0002(n.s.) | 4.1162(n.s.) | 1.7994(n.s.) |
| ブナ総フェノール量食害処理 | 2.3059(n.s.) | 4.2914(n.s.) | 6.8265(*) | 0.553(n.s.) | 11.191(***) |
| 室素処理 | 8.6543(*) | 9.1152(*) | 41.9563(***) | 25.3222(***) | 14.843(***) |
| 食害×室素 | 0.7991(n.s.) | 0.073(n.s.) | 0.7812(n.s.) | 6.7991(*) | 0.727(n.s.) |
| ミズナラ総フェノール量食害処理 | 2.1491(n.s.) | 7.1917(*) | 0.6056(n.s.) | 0.6375(n.s.) | 0.3676(n.s.) |
| 室素処理 | 1.0538(n.s.) | 19.7022(***) | 2.0309(n.s.) | 1.3862(n.s.) | 4.3507(n.s.) |
| 食害×室素 | 0.1593(n.s.) | 30.5509(***) | 0.016(n.s.) | 2.6351(n.s.) | 2.1215(n.s.) |
| ブナ総合タンニン量食害処理 | 1.7304(n.s.) | 6.7496(*) | 5.8109(*) | 1.8225(n.s.) | 6.6569(*) |
| 室素処理 | 10.0468(***) | 11.1201(***) | 49.3946(***) | 34.8129(***) | 8.9894(*) |
| 食害×室素 | 0.3403(n.s.) | 0.6653(n.s.) | 1.3815(n.s.) | 2.727(n.s.) | 2.9306(n.s.) |
| ミズナラ総合タンニン量食害処理 | 4.9572(*) | 15.0974(***) | 0.2271(n.s.) | 2.4297(n.s.) | 0.2022(n.s.) |
| 室素処理 | 3.1191(n.s.) | 4.7802(*) | 0.5247(n.s.) | 0.00003698(n.s.) | 0.1829(n.s.) |
| 食害×室素 | 0.1254(n.s.) | 2.1127(n.s.) | 0.8011(n.s.) | 0.3319(n.s.) | 0.6441(n.s.) |