The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Molecular characterization of the operon comprising the spoIV gene of Bacillus megaterium DSM319 and generation of a deletion mutant
Klaus-Detlev WittchenJan StreyAndreas BültmannStefan ReichenbergFriedhelm Meinhardt
Author information
JOURNALS FREE ACCESS

1998 Volume 44 Issue 5 Pages 317-326

Details
Abstract

According to sequence analysis, the spoIV-locus of Bacillus megaterium DSM319 is 1,185 bp long; it is the second gene of a sporulation operon, which altogether contains three open reading frames. The ORF preceding spoIV encodes a putative polypeptide with 94 amino acids; the 3rd ORF of the operon has 972 bp corresponding to 324 amino acids. The operon is flanked on both sides by palindromic sequences, probably representing Rho-independent terminators. A primer extension analysis revealed that mRNA synthesis starts immediately downstream of a promoter, which is similar to the consensus sequence of Bacillus subtilis σE dependent promoters. Both the −35 and the −10 region are within the terminator region of the preceding operon. Gene knockout experiments and reporter gene assays with a newly developed system based on the heterologous Paenibacillus macerans glucanase gene (bgl) confirmed σE-dependent transcription. Two open reading frames of a further upstream operon were also identified. Northern analysis revealed that transcription of these ORFs comes about in late sporulation phases. The genetic organization of the spoIV comprising operon and adjacent loci clearly resembles that of the B. subtilis yqfa-phoH gene cluster. Thus our findings are of general significance for endospore-forming bacteria.

Information related to the author
© 1998 by The Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Previous article Next article
feedback
Top