A phylogenetic study on galactose-containing Candida species based on 18S ribosomal DNA sequences

Motofumi Suzuki,* Sung-Oui Suh,† Takashi Sugita,†† and Takashi Nakase

Japan Collection of Microorganisms, The Institute of Physical and Chemical Research (RIKEN), Wako 351–0198, Japan

(Received October 12, 1998; Accepted September 28, 1999)

Phylogenetic relationships of 33 Candida species containing galactose in the cells were investigated by using 18S ribosomal DNA sequence analysis. Galactose-containing Candida species and galactose-containing species from nine ascomycetous genera were a heterogeneous assemblage. They were divided into three clusters (II, III, and IV) which were phylogenetically distant from cluster I, comprising 9 galactose-lacking Candida species, C. glabrata, C. holmii, C. krusei, C. tropicalis (the type species of Candida), C. albicans, C. viswanathii, C. maltosa, C. parapsilosis, C. guilliermondii, and C. lusitaniae, and 17 related ascomycetous yeasts. These three clusters were also phylogenetically distant from Schizosaccharomyces pombe, which contains galactomannan in its cell wall. Cluster II comprised C. magnoliae, C. vaccini, C. apis, C. groppengiesserii, C. etchellsii, C. floridcola, C. lactiscondensi, Wickerhamiella domercqiae, C. versatilis, C. azyma, C. vanderwaltii, C. pararugosa, C. sordohila, C. spandovensis, C. galacta, C. ingens, C. incommunis, Yarrowia lipolytica, Galactomyces geotrichum, and Dipodascus albidus. Cluster III comprised C. tepae, C. antillancae and its synonym C. bondarzewiae, C. ancudensis, C. petrohuensis, C. santiacbensis, C. ciferrii (anamorph of Stephanoascus ciferrii), Arxula terrestris, C. castrensis, C. valdiviana, C. paludigena, C. blankii, C. salmanticensis, C. auringiensis, C. bertae, and its synonym C. bertae var. chilensis, C. edax (anamorph of Stephanoascus smithiae), Arxula adenivorans, and C. steatolytica (synonym of Zygosaccharomyces hellenicus). Cluster IV comprised C. cantarellii, C. vinaria, Dipodascopsis uninucleata, and Lipomyces lipofir. Two galactose-lacking and Q-8-forming species, C. stellata and Pichia pastoris, and 5 galactose-lacking and Q-9-forming species, C. apicola, C. bombi, C. bombicola, C. geocheares, and C. insectalens, were included in Cluster II. Two galactose-lacking and Q-9-forming species, C. drimydis and C. chiroterorum, were included in Cluster III.

Key Words——galactose-containing Candida species; molecular phylogeny; 18S ribosomal DNA sequences

The ascomycetous anamorphic genus Candida Berkhout is the largest yeast genus (Barnett et al., 1990; Meyer et al., 1998). In the recent fourth edition of “The Yeasts: A Taxonomic Study,” Meyer et al. (1998) recognized 163 species in the genus Candida and described their morphological and physiological characteristics, ecological data, ubiquinone systems, DNA base compositions, DNA-DNA reassociation, and other molecular data available. Over the years, various chemotaxonomic methods have been applied to the classification of this genus as exemplified by serological classification based on cell surface antigens (Tsuchiya et al., 1965), proton magnetic resonance spectra of cell wall mannans and mannose-containing polysaccharides (Spencer and Gorin, 1969, 1971), DNA base compositions (Nakase and Komagata, 1971), ubiquinone (coenzyme Q) analysis (Montrocher et al., 1990; Yamada and Kondo, 1972), immuno-electrophoretic analyses (Montrocher, 1980, 1984), cellular carbohydrate compositions (Von Arx and Weijman, 1979; Weijman and Rodrigues de Miranda, 1988; Weijman et al., 1988), and cellular long-chain fatty acid compositions and electrophoretic karyotypes (Viljoen and Kock, 1989). In spite of their considerable contributions, however, other approaches more amenable to phylogenetic analysis are required for classification of the genus Candida.
Kurtzman and Robnett (1997, 1998) carried out a comprehensive phylogenetic study on all species of ascomycetous yeasts, including members of *Candida* and other anamorphic genera based on partial sequences of the 5’ end of the large subunit ribosomal RNA gene (26S rDNA). Kurtzman and Robnett (1998) suggested that additional gene sequences needed to be analyzed before most genera could be phylogenetically circumscribed. Barns et al. (1991), Hendriks et al. (1991, 1992), Wilmotte et al. (1993), and Cai et al. (1996) reported phylogenetic relationships of several medically and industrially important *Candida* species and the related ascomycetous yeasts based on complete or almost complete sequences of the small subunit ribosomal RNA gene (18S rDNA). However, the 18S rDNA sequences of almost all *Candida* species remain undetermined.

Suzuki and Nakase (1998) reported cellular neutral sugar compositions and ubiquinone systems of almost all species of the genus *Candida* and showed that these species were divided into six groups based on the presence or absence of galactose in cellular neutral sugars and from types of the ubiquinone systems, i.e., Group Ia (glucose-mannose, Q-6), Group Ib (glucose-mannose, Q-7), Group Ic (glucose-mannose, Q-8), Group Id (glucose-mannose, Q-9), Group IIa (glucose-mannose-galactose, Q-8), and Group IIb (glucose-mannose-galactose, Q-9). They suggested that an analysis of 18S rDNA sequences was needed to verify phylogenetic relationships among *Candida* species within and between the six groups. In this study, we examined complete or almost complete sequences of 18S rDNA from 33 species of *Candida* belonging to Groups IIa and IIb containing galactose in the cells to clarify their phylogenetic relationships among the genus *Candida* and related ascomycetous yeasts.

Materials and Methods

Strains employed. The type strains of 33 species of galactose-containing *Candida* species, *Arxula adeninivorans*, *Arxula terrestris*, *Wickerhamiella domercqiae*, and *Yarrowia lipolytica* were used in this study (Table 1) as well as two strains of a synonym of *Candida bertae*, *C. bertae* var. *chiloensis*, and a synonym of *C. antillancae*, *C. bondarzewiae*.

Preparation of DNA. The nuclear DNAs of these strains were extracted and purified by the method of Nakase and Suzuki (1985).

Sequencing. For strains of *Candida azyma* and *C. magnoliae*, the small subunit ribosomal RNA gene (18S rDNA) sequences were determined by the direct method, using radioisotopes as described by Takashima et al. (1995). For strains of other species, the following direct and cloning methods were used. The 18S rDNA was amplified by using the polymerase chain reaction (PCR) with Taq DNA polymerase (Takara Shuzo Co., Ltd., Otsu, Japan) and two primers, P1 (5’-ATCTGGTGTGATCCTGCCAGT-3’) and NS8 (5’-TCCGAGGTTCACTAAGGGA-3’). The cycling parameters for direct sequencing were as follows: an initial denaturation step of 95°C for 4 min followed by 30 cycles of 94°C for 1 min (denaturation), 55°C for 2.5 min (annealing), and 72°C for 2.5 min (extension). The PCR products were purified by using the UltraClean PCR Clean-up Kit (Mo Bio Laboratories, Inc., Solana Beach, CA, U.S.A.). The cycling parameters for cloning sequencing were as follows: 25 cycles of 94°C for 30 s (denaturation), 55°C for 30 s (annealing), 72°C for 2 min (extension), and the final 7 min extension step for 3’-A-overhangs of PCR products. The PCR products were directly cloned with a TA original Cloning Kit (Invitrogen Corporation, Carlsbad, CA, U.S.A.) as recommended by the manufacturer. Plasmid DNA with 18S rDNA (cloned 18S rDNA) was purified by using the Wizard Plus Miniprep DNA Purification System (Promega, Madison, WI, U.S.A.). Purified 18S rDNA and cloned 18S rDNA were sequenced by the dideoxy method by using the AutoCycle Sequencing Kit (Pharmacia Biotech, Uppsala, Sweden) or the SequiTherm Long-Read Cycle Sequencing Kit (Epicentre Technologies, Madison, WI, U.S.A.) and the ALFexpress DNA sequencer (Pharmacia Biotech). The primers used for sequencing were 5’-TGGAAT-TACCGCGGTGCTGGACC-3’, 5’-CCGTCAATTCCTTTAAAGTTCAGCC-3’, 5’-GACGGGCCTTGTTGATAC-AAGGGCACG-3’, 5’-TCTGGCGCAGCGCGCTACTACGT-3’, 5’-AAGGTCTCGTTCTGTATCGC-3’, 5’-ACGGTACACATCCAAGGAAGG-3’ and 5’-CCTTCTTGGATGTTGACCCGT-3’. M13 (−40) and M13 Reverse primers contained in the AutoCycle Sequencing Kit were also used for cloned 18S rDNA.

Phylogenetic analysis. Generated sequences and reference sequences from the nucleotide sequence libraries (EMBL, GenBank, and DDBJ) were aligned by using the multialignment program CLUSTAL W (Thompson et al., 1994) (version 1.74). Reference 18S rDNA sequences were as follows: *Candida albicans* (X53497), *C. glabrata* (X51831), *C. holmii* (X78601), *C. krusei* (M55528), *C. lusitaniae* (M55526), *C. maltosa* (D14593), *C. parapsilosis* (AB013588), *C. tropicalis* (M55527), *Debaryomyces hansenii* (X58052), *Dekkera anomala* (X58053), *Dipodascus albohirsutus* (X69840), *Galactomyces geotrichum* (X69842), *Hanseniaspora uvarum* (X69844), *Klyveromyces lactis* (X51830), *K. polysporus* (X69845), *Lipomyces lipofer* (X69848), *Lodderomyces elongisporus* (X78600), *Metschnikowia bicuspidata* (X69846), *Pichia
For this comparative study, we also used our unpublished sequence data from 11 species, *Candida guilliermondii*, *C. viswanathii*, *C. bombi*, *C. bombicola*, *C. geochares*, *C. insectalens*, *C. stellata*, and *Pichia pastoris* (Sugita, T. and Nakase, T., submitted; Suzuki, pastoris). Distances between pairs of sequences were calculated by using the two-param-
eter model of Kimura (1980). Sites where gaps existed in any of the sequences were excluded. A phylogenetic tree was constructed by using the neighbor-joining method of Saitou and Nei (1987). Bootstrap analysis (Felsenstein, 1985) was performed with 1,000 replicates for the neighbor-joining tree.

Results and Discussion

Complete or almost complete 18S rDNA sequences were determined for the type strains of 33 species of the genus *Candida*, two strains of a synonym of *C. bortae* (*C. bortae* var. *chiloensis*) and a synonym of *C. antillanec* (*C. bondarzewiae*), and the type strains of *Arxula adeninivorans*, *Arxula terrestris*, *Wickerhamiella domercqiae*, and *Yarrowia lipolytica*. From sequencing results, nucleotide base lengths of 18S rDNA were either 1,650–1,730 bases or 1,750–1,790 bases. Our 39 strains sequence data were aligned together with known sequences of 30 species and our unpublished sequences of 11 species. A phylogenetic tree was constructed by the neighbor-joining (NJ) method (Fig. 1), using *Schizosaccharomyces pombe* as an outgroup. *S. pombe* contains galactomannan in its cell wall (Gorin and Spencer, 1970) and is a representative member of the order Schizosaccharomycetales (Kurtzman, 1993). This species is also a member of “Archiascomycetes” proposed by Nishida and Sugiyama (1994). In the tree, *Candida* species and related ascomycetous yeast species were divided into four phylogenetically distinctive clusters, I, II, III, and IV. Galactose-containing *Candida* species and nine ascomycetous genera, containing galactomannans in their cell walls (Gorin and Spencer, 1970) or galactose in the cells (Weijman, 1977, 1979; Weijman and van der Walt, 1989) were a heterogeneous assemblage and classified into three clusters (II, III, and IV) between *S. pombe* (outgroup) and the *Clavispora-Metschnikowia* clade in Cluster I.

Thirty-one species have Q-9 and 3 have Q-8 (*C. galacta*, *C. lactiscondensi*, and *C. incommunis*) as the major ubiquinone (Table 2). The three species with Q-8 did not form a single cluster, but were scattered among the species with Q-9.

Species of Cluster I

This cluster comprised 9 galactose-lacking *Candida* species, *C. glabrata*, *C. holmii*, *C. krusei*, *C. tropicalis* (the type species of *Candida*), *C. albicans*, *C. viswanathii*, *C. maltosa*, *C. guilliermondii*, and *C. lusitaniae*, and 17 species of teleomorphic ascomycetous yeasts that do not contain galactose in their cell wall mananns (Gorin and Spencer, 1970) or in their cell walls (Prillinger et al., 1993). Recently in our laboratory, 18S ribosomal DNA sequences have been determined for about 100 species of the genus *Candida* belonging to Groups Ic (glucose-mannose and Q-8) and Id (glucose-mannose and Q-9) of Suzuki and Nakase (1998) and several species of related teleomorphic ascomycetous genera (Sugita, T. and Nakase, T., submitted; Suzuki, M. and Nakase, T., submitted). Only 9 species were outside Cluster I. They were *C. apicola*, *C. bombi*, *C. bombicola*, *C. geohares*, *C. drimydis*, *C. chloropterorum*, *C. insectalens*, *C. stellata*, and *Pichia pastoris*. In this study, we revealed that these 9 species were included in Cluster II or in Cluster III as discussed below.

Species of Cluster II

This cluster is an assemblage of phylogenetically diverse species with large interspecific divergences and is further divided into four subclusters, IIA, IIB, IIC, and IID. Subcluster IIA was composed of two groups, IIA-1 and IIA-2, and *C. geohares*, *C. bombicola*, and *C. bombi*. Subcluster IIA-1 comprised four galactose-containing species, *C. magnoliae*, *C. vaccini*, *C. apis*, and *C. gropengiesserii*, and was connected to Subcluster IIA-2, which is comprised of galactose-containing *C. etchellsii*, *C. florica*, and *C. lactiscondensi*, together with two galactose-lacking species, *C. stellata* and *C. apicola*. These subclusters were connected to galactose-lacking *C. geohares* (soil isolate) and subsequently joined with galactose-lacking *C. bombi* and *C. bombicola* (bumblebee and honey isolates, respectively). The species of Subcluster IIA-1 were isolated from flowers and several kinds of bees (Table 2). The species of Subcluster IIA-2 were isolated from various sources, including flowers and bee’s gut as well as cucumber brine, soy mash, condensed milk, and wine grapes (Table 2). *C. vaccini*, *C. etchellsii*, *C. florica*, *C. lactiscondensi*, *C. apicola*, *C. bombi*, and *C. bombicola* are sugar- or halo-tolerant (Suzuki et al., 1992; Tokuoka et al., 1985, 1987), but appear to be separate species. Five galactose-lacking *Candida* species, *C. apicola*, *C. bombi*, *C. bombicola*, *C. geohares*, and *C. stellata*, were included in this subcluster. The former 4 species have Q-9 as the major ubiquinone and the latter has Q-8. Spencer and Gorin (1970) grouped *C. apicola*, *C. bombi*, *C. bombicola*, *C. geohares*, and *C. stellata* based on similarities of proton magnetic resonance (PMR) spectral patterns of their cell wall mananns and galactomannans. Kurtzman and Robnett (1997) showed the same results as ours, using 26S ribosomal DNA partial sequence analysis. Subcluster IIB comprised 7 galactose-containing *Candida* species and the teleomorphic species *Wickerhamiella domercqiae* (van der Walt et al., 1973), which contains galactomannan in its cell wall (Gorin and Spencer, 1970; Spencer and Gorin, 1970). *C.
Fig. 1. A phylogenetic tree of Candida species and related ascomycetous yeasts with and without galactose in their cells, their cell walls, or their cell wall polysaccharides. The tree was constructed by the neighbor-joining method. Schizosaccharomyces pombe was used as the outgroup species.

The numerals represent the confidence level from 1,000 replicate bootstrap samplings (frequencies less than 50% are not indicated). Species in bold type contain galactose in their cells, their cell walls, or their cell wall polysaccharides.
Table 2. Main source of isolation, major ubiquinone, pseudo- and true hyphae formation, and inositol assimilation of galactose-containing Candida species.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Subcluster</th>
<th>Species</th>
<th>Main source of isolation</th>
<th>Major ubiquinone</th>
<th>Pseudo-hyphae</th>
<th>True hyphae</th>
<th>Inositol assimilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>IIA</td>
<td>C. magnoliae</td>
<td>flower of Magnolia sp., gut of bees, etc.</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. vaccinii</td>
<td>blueberry flower</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. apis</td>
<td>trachea of a bee</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gropengiesseri</td>
<td>an insect</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. etchellsii</td>
<td>cucumber brine, soy mash, etc.</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. floricola</td>
<td>dandelion flower</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. lactiscondensii</td>
<td>condensed milk, cucumber brine, etc.</td>
<td>Q-8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IIB</td>
<td>C. versatilis</td>
<td>cucumber brine, soy mash, etc.</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. azyma</td>
<td>lichen</td>
<td>Q-9</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. vanderwaltii</td>
<td>winery equipment, South Africa</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. pararugosa</td>
<td>human feces</td>
<td>Q-9</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. sorbophila</td>
<td>washings of ion-exchange resin, Japan</td>
<td>Q-9</td>
<td>primitive</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. spandovensis</td>
<td>Pilsner beer</td>
<td>Q-9</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. galacta</td>
<td>cocoon of red ants</td>
<td>Q-8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>C. incommunis</td>
<td>grape must, Japan</td>
<td>Q-8</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. tepae</td>
<td>rotten wood, Chile</td>
<td>Q-9</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. antillancae</td>
<td>rotten wood, Chile</td>
<td>Q-9</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. ancadensis</td>
<td>rotten wood, Chile</td>
<td>Q-9</td>
<td>primitive</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. petrohuensis</td>
<td>rotten wood, Chile</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. santjacobensis</td>
<td>rotten wood, Chile</td>
<td>Q-9</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. ciferrii</td>
<td>cow</td>
<td>Q-9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. bertae</td>
<td>rotten wood, Chile</td>
<td>Q-9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. edax</td>
<td>insect tunnel</td>
<td>Q-9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. steatolytica</td>
<td>mastitic bovine udder</td>
<td>Q-9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. castrensiss</td>
<td>rotten wood, Chile</td>
<td>Q-9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. paludigena</td>
<td>high-moor peat near Moscow, Russia</td>
<td>Q-9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. valdiviana</td>
<td>sputum, rotten wood<sup>a</sup>, Chile</td>
<td>Q-9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. blankii</td>
<td>organs of a mink, soil, horse</td>
<td>Q-9</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. salmanticensis</td>
<td>alpechin<sup>b</sup> in Spain</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. aurinigensis</td>
<td>alpechin in Spain</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>C. insectal-</td>
<td>grape must, South Africa</td>
<td>Q-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. vinaria</td>
<td>grape must, Japan</td>
<td>Q-9</td>
<td>primitive</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^a From Meyer et al. (1998).
^b From Grinbergs and Yarrow (1970).
^c Alpechin: the aqueous solution separating during the manufacture of olive oil.
^d From Suzuki and Nakase (1998).

C. azyma, C. pararugosa, and C. vanderwaltii were remotely related to one another, but clustered together. C. versatilis was connected to W. domercqiae. Spencer and Gorin (1970) reported that the galactomannan of C. versatilis showed a similar PMR spectrum to W. domercqiae. C. versatilis and C. etchellsii (included in Subcluster IIA) are known as important halo-tolerant yeasts in the maturation of soy sauce fermentation in Japan (Asao et al., 1967; Onishi, 1957). Since these two species were phylogenetically different from each other, it is possible to establish an identification and detection system by using species-specific primers based on 18S rDNA sequences. C. galacta was associated with C. spandovensis and C. sorbophila, but was phylogenetically distant from C. apis, which is included in Subcluster IIA-1. C. galacta was at one time considered a variety of C. apis (Meyer et al., 1984). However, Lee et al. (1993) proposed a new combination, Candida galacta, because C. galacta had Q-8 as the major ubiquinone, whereas C. apis had Q-9, and because these two species showed significant differences in DNA base composition. Our results showed that these two species were phylogenetically different from each other, as was also suggested by 18S and 26S rRNAs partial sequence analysis (Yamada et al., 1994) and by 26S rDNA partial sequence analysis (Kurtzman and Robnett, 1998). Although Viljoen and Kock (1989) reported that these two species were similar to each other in cellular fatty acid compositions, the similarity seems to be biochemically convergent.

Subcluster IIC comprised galactose-containing Candida ingens (synonym of Dipodascus ingens) and one galactose-lacking Candida species, C. insectal-
ens, and the teleomorphic species *Pichia pastoris*, which does not contain galactose in its cell wall mannan (Gorin and Spencer, 1970). *C. ingens* was associated with *P. pastoris*, but the distance between the two species was very large. This association is still unstable because we sometimes encountered other cases of association with the *Dipodascus-Galactomyces* clade, with *C. incommunis*, or with *Yarrowia lipolytica* when new sequences were added to a tree generated with version 1.6 of the CLUSTAL W program. When van der Walt and van Kerken (1961) originally described *C. ingens*, no statement concerning arthroconidium formation was in its description. De Hoog et al. (1986) found that cells of this species were strongly coherent and later disarticulated into separate cells. They transferred it to the anamorphic genus *Geotrichum* and after mating reactions found that its teleomorph belonged to the genus *Dipodascus*. This species was nomenclaturally corrected as *Dipodascus ingens* by De Hoog et al. (1997). Kurtzman and Robnett (1995, 1998) showed that *Dipodascus* species were divided into two phylogenetic groups based on 26S rDNA partial sequences and that *Galactomyces geotrichum* and *Dipodascus albidus* belonged to one group, whereas *Dipodascus ingens* belonged to the other group. The galactose-lacking and Q-9-forming *C. insectalens* was connected to galactose-lacking and Q-8-forming *P. pastoris*, but the distance between the two species was large.

Subcluster IIId comprised galactose-containing *C. incommunis* and three teleomorphic ascomycetous species, *Yarrowia lipolytica*, *Dipodascus albidus*, and *Galactomyces geotrichum*, which contain galactomannans in their cell walls (Gorin and Spencer, 1970). *C. incommunis* was connected to *Y. lipolytica*, although these two species appeared to be phylogenetically remote to each other. *C. incommunis* had Q-8 as the major ubiquinone and was isolated from grape must in Japan. This species was phylogenetically removed from Q-9-possessing *C. vinaria* included in cluster IV, although both species were isolated from grape must in Japan. In this study, we reexamined the 18S rDNA sequence of the type strain of *Y. lipolytica* because a sequence of this species registered in GenBank contained a great many unidentified bases that lead to tree instability. Kurtzman (1998) recognized *Y. lipolytica*, which was at one time included in the genus *Saccharomyces*. *Y. lipolytica* is phylogenetically quite different from *Saccharomyces*, as suggested from our results and data on partial sequences of 18S and 26S ribosomal RNA/DNA sequences (Kurtzman and Robnett, 1994, 1995, 1998; Yamada and Nogawa, 1990) and almost complete sequences of 18S ribosomal DNA (Wilmotte et al., 1993). These two genera are also chemotaxonomically different from each other. Namely, *Yarrowia* has Q-9 as the major ubiquinone and contains galactose in the whole cells, whereas *Saccharomyces* has Q-8 as the major ubiquinone and does not contain galactose in the whole cells (Gorin and Spencer, 1970; Goto and Takami, 1986; Suzuki and Nakase, unpubl.; Yamada et al., 1976).

Species of Cluster III

Nine species (including two varieties of one species) described by Ramírez and González (1984a–g), *C. antillancae*, *C. bondarzewiae* (synonym of *C. antillancae*), *C. tepae*, *C. ancudensis*, *C. petrohuensis*, *C. drimydis*, *C. santjacobensis*, *C. castrensis*, *C. bertae* var. *bertae*, and *C. bertae* var. *chiloensis* (synonym of *C. bertae*) were found in the *Stephanosascus-Zygoascus* lineage. Interestingly, all these species were isolated from rotten wood in Chile, as shown in Table 2. These species were divided into two groups by the ability or inability to assimilate inositol (Table 2). The group with the inability to assimilate inositol consisted of 6 species. Of these, 5 were galactose-containing species, *C. antillancae*, *C. bondarzewiae*, *C. tepae*, *C. ancudensis*, and *C. petrohuensis*, and 1 was galactose-lacking (*C. drimydis*). These species are phylogenetically closely related. Meyer et al. (1998) considered *C. bondarzewiae* to be a synonym of *C. antillancae* based on their morphological and physiological similarities. Furthermore, Kurtzman and Robnett (1997, 1998) showed *C. tepae*, *C. antillancae*, and *C. bondarzewiae* to be conspecific from 26S rDNA partial sequence analysis. Moreover, Kurtzman and Robnett (1997, 1998) showed *C. petrohuensis*, *C. ancudensis*, and *C. drimydis* to be conspecific from 26S rDNA partial sequence analysis. Consequently, these species are predicted to reduce to only 2 species, *C. tepae* and *C. petrohuensis*, but DNA-DNA reassimilation experiments are needed to confirm this prediction. The group with the ability to assimilate inositol was divided further into three subgroups. The first consists of *C. bertae* and its synonym, *C. bertae* var. *chiloensis* (Meyer et al., 1998). They were related to *C. edax* (anamorph of *Stephanosascus smithiae*) (Giaménez-Jurado et al., 1994), and linked to *C. steatolytica* (synonym of *Zygoascus helenicus*) (Smith, 1986) and *Arxula adeninivorans*. The second subgroup consisted of *C. santjacobensis*, and it was connected to *A. terrestris*, the type species of the anamorphic genus *Arxula* (van der Walt et al., 1990), which contains galactose in the cells (Weijman, 1979). These had a linkage with *C. ciferrii* (anamorph of *S. ciferrii*). A phylogenetically close relationship between *A. terrestris* and *S. ciferrii* was also suggested on the basis of partial sequences of 18S and 26S rRNAs (Yamada and Nogawa, 1990) and partial sequences of 26S rDNA (Kurtzman and Robnett, 1995). The third subgroup...
consisted of 3 species, *C. castrensis*, *C. paludigena*, and *C. valdiviana*. *C. castrensis* had a phylogenetically close relationship with *C. paludigena*, which was isolated from high-moor peat near Moscow in Russia (Golubev et al., 1981). Kurtzman and Robnett (1997, 1998) showed these 2 species to be conspecific from 26S rDNA partial sequence analysis. They were associated with *C. valdiviana* described by Grinbergs and Yarrow (1970). A cluster comprised of these subgroups was connected to the galactose-lacking species *C. chiropterorum*, an isolate from the liver of a bat. *C. chiropterorum* can also assimilate inositol and form true-hyphae.

C. blankii, which assimilates inositol and forms true-hyphae, was associated with the *Stephanoascus-Zygoascus* lineage. Middelhoven (1993) reported that *C. blankii* assimilated n-alkanes, butylamine, and putrescine, but not certain benzene compounds, and that *Arxula terrestris* and *Stephanoascus ciferrii* assimilated n-alkanes, butylamine, putrescine, and benzene compounds. It is interesting, from a phylogenetic point of view, that these species share the ability to assimilate three of these compounds. *C. auringiensis* and *C. salmanticensis* constituted a cluster associated with *C. blankii* and with the *Stephanoascus-Zygoascus* lineage. These two species were originally isolated from the same source (alpechin, an aqueous solution separating during the manufacture of olive oil).

Species of Cluster IV

C. vinaria and *C. cantarellii* were linked and connected to *Lipomyces lipofer* and *Dipodascopsis uninucleata* (members of the family Lipomycetaceae), which contain galactose in the cells (Weijman and van der Walt, 1989). *C. vinaria* was isolated from grape must in Japan, whereas *C. cantarellii* was isolated from grape must in South Africa. The connection of these species with genera *Lipomyces* and *Dipodascopsis* was also suggested on the basis of partial sequences of 26S ribosomal DNA (Kurtzman and Robnett, 1997), but bootstrap support is weak.

Kurtzman and Robnett (1998) showed phylogenetic relationships among all the nearly 500 currently accepted species of ascomycetous yeasts, including members of *Candida* and other anamorphic genera, from analysis of 26S rDNA partial sequences. Galactose-containing *Candida* species, with the exception of *Candida ingens* (a synonym of *Dipodascopsis ingens*) in the *Dipodascus* clade, were included in the *Stephanoascus/Metschnikowia* clade, which was divided into two groups, *Sporopachyderma-Stephanoascus-Wickerhamiella-Zygoascus* and *Clavispora-Cyniclomyces-Metschnikowia-Yarrowia*. The former group included our Subcluster IIB, Cluster III except *C. blankii*, *C. auringiensis*, and *C. salmanticensis*, and Cluster IV. The latter one included our Subcluster IIA, *C. blankii*, *C. auringiensis*, and *C. salmanticensis* in Cluster III, and *C. incommunis* in Subcluster IID.

In conclusion, galactose-containing species of *Candida* were phylogenetically heterogeneous and were divided into three clusters. These clusters were phylogenetically quite different from a group of galactose-lacking *Candida* species, which includes the type species of the genus *Candida*. However, eight galactose-lacking *Candida* species were included in these clusters. Furthermore, 18S ribosomal DNA sequences from galactose-lacking *Candida* species that have Q-6, Q-7, Q-8 or Q-9 as the major ubiquinone need to be analyzed for a better understanding of phylogenetic relationships between galactose-containing *Candida* species and galactose-lacking *Candida* species.

This study was supported in part by “Study and Research on Safety Measures of Bioindustry.” We thank Mr. D. Yarrow, Centraalbureau voor Schimmelcultures, Yeast Division, Delft, The Netherlands; Dr. C. P. Kurtzman, Microbial Properties Research, National Center for Agricultural Utilization Research, U.S.A.; Dr. Shung-Chang Jong, American Type Culture Collection, U.S.A.; Dr. K. Mikata, Institute for Fermentation, Osaka, Osaka, Japan; and Dr. J. Sugiyama, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan, for kindly supplying yeast type strains. We also thank two anonymous referees for their valuable comments.

References

Tokuoka, K., Ishitani, T., Goto, S., and Komagata, K. (1985) Identifi-

