Introduction

Flower-visiting insects can infect the flower organs and the flower nectar with yeasts carried on their bodies or in their digestive tracts (e.g. Pozo et al., 2011; Sandhu and Waraich, 1985). The association of flowers and pollinating or non-pollinating insects feeding on pollen and nectar with yeasts has been demonstrated by numerous works over the past three decades (e.g. Lachance et al., 2001b; Limtong et al., 2012; Pozo et al., 2012; Sandhu and Waraich, 1985; Sipiczki, 2010). Species of Metschnikowia, Starmerella and related anamorphic Candida species seem to be frequent colonists of insect-visited flowers (e.g. Lachance et al., 2001b; Nakase et al., 2010; Pimentel et al., 2005; Rosa et al., 2007). Most species of the Starmerella clade have been reported from bees or sugar-rich microhabitats associated with bees (Pimentel et al., 2005; Rosa et al., 1999, 2003, 2007; Spencer et al., 1970; Teixeira et al., 2003). This report describes a novel species of the Starmerella clade isolated from flowers of leguminous plants in East Caucasus.

Materials and Methods

Yeast isolation. Yeasts were isolated from aseptically dissected flowers of Wisteria sinensis. The excised internal parts of the flowers were macerated in
0.5 ml sterile water and samples of the macerates were streaked on YPGA (1% yeast extract, 1% peptone, 2% glucose, 2% agar, w/v) plates without dilution. Yeast colonies were isolated from the plates after 6 days of incubation at 25°C. The isolates were purified by streaking samples of their cultures on YPGA plates and selecting individual colonies. The isolates were maintained at -80°C.

Amplification and sequencing of chromosomal regions. Genomic DNA was extracted from overnight cultures of the strains grown in YPGL broth at 25°C as described previously (Sipiczki, 2003). The extracted DNA was used for the amplification of the D1/D2 domains of the large subunit (LSU) 26S rRNA genes and the ITS1-5.8S-ITS2 regions. The primers used were NL-1 and NL-4 for the D1/D2 domains (O’Donell, 1993), ITS1 and ITS4 for the ITS region (White et al., 1990). The amplified DNA was purified and sequenced using the amplification primers.

Sequence similarity search and phylogenetic analysis. The D1/D2 and ITS sequences of the isolates were compared with each other using the blast algorithm of NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). To identify similar sequences deposited in databases, a MEGABLAST similarity search was performed in the NCBI database. The sequences of the most similar hits were extracted from the database and used for phylogenetic analysis. The corresponding sequences of the type strains of the Starmerella clade and related species were downloaded from the CBS database (http://www.cbs.knaw.nl/collections/BioloMICS.aspx). For multiple alignment of sequences, the CLUSTAL W 1.7 (Thompson et al., 1994) and the MAFT version 6 (Katoh and Toh, 2008) algorithms were used. The aligned sequences were analyzed with neighbor-joining and DNA parsimony methods of the PHYLIP software package, version 3.67 (Felsenstein, 2007). Confidence limits for phylogenetic trees were estimated from bootstrap analysis (1,000 replications; SEQ-BOOT and CONSENCE of the PHYLIP package). The trees were visualized with the TREEVIEW programme (Page, 1996).

Morphological and taxonomic examination. Colony morphology was examined on YPGA plates after 1 month of incubation at 25°C. The morphology of yeast cells was examined microscopically using overnight cultures grown at 25°C in YPGL broth and on YPGA plates. The ability to form mycelium or pseudomycelium was checked using cultures growing in thin YPGA films sandwiched between glass slides (Sipiczki, 2011). Sporulation was tested on yeast-extract-glucose agar, malt-extract agar, cornmeal agar and Gorodkowa agar (van der Walt and Yarrow, 1984) in pure and mixed cultures (incubation at 16°C and 25°C for 3 weeks). For taxonomically relevant physiological properties, the isolates were tested using the standard taxonomic methods described by van der Walt and Yarrow (1984).

Results and Discussion

Flowers of blooming *Wisteria sinensis* plants frequently visited by bees and other flying insects were collected from 3 parks of the city of Baku (Azerbaijan) and used for yeast isolation. Most flowers contained yeasts. Although various yeast colonies emerged on the plates, yeasts showing slightly pink, smooth colonies (Fig. 1a) appeared to be dominant in 7 plant samples. One colony of this type was isolated from each plant sample for further examination. The isolates propagated by budding (Fig. 1b) and formed neither hyphae nor pseudohyphae.

The D1/D2 domains of the large subunit (LSU) 26S rRNA genes of the isolates were amplified and sequenced. Out of 7 isolates, six had identical D1/D2 do-
mains that differed in one nucleotide from the corresponding sequence of the seventh isolate. The isolate 11-1071.1 representing the larger group was selected for further examination and tests. The GenBank accession numbers of the the D1/D2 sequences are JX112043 and JX481889 for 11-1071.1 and 11-1071.2, respectively.

The MEGABLAST similarity search with these sequences found no identical sequences in the NCBI database. The most similar D1/D2 hits were sequences of taxonomically uncharacterized Candida and Starmerella isolates from various substrates, including flowers. To determine the position of the isolates in the system of validly described species, the D1/D2 sequence of 11-1071.1 was compared with the corresponding sequences of the type strains of the Starmerella clade and related species. The Blast comparisons identified Candida kuoi (11 nucleotide differences from CBS 7267T in the overlapping parts of the sequences) and Starmerella bombicola (23 substitutions when compared to CBS 6009T) as the most closely related species. This close relationship is also supported by the phylogenetic analysis shown below. When the ITS regions were compared, the isolate 11-1071.1 (JX112044) differed from S. kuoi CBS 7267T (HQ111058) at 38 positions (92% identity) and from S. bombicola CBS 6366 (HQ111054; the sequence of the type strain is not available) at 41 positions (91% identity). The ITS sequences of the other Caucasian isolates were either identical to that of 11-1071.1 or showed single nucleotide substitutions or deletions. The GenBank accession numbers of the latter sequences are JX910132 (strain 1071.2), JX910133 (strain 1071.3) and JX910134 (strain 1071.8). These results indicate that the Caucasian isolates represent a hitherto undescribed budding yeast species. This conclusion is supported by the previous studies showing that yeast strains with >1% substitution in the D1/D2 domains (Kurtzman and Robnett, 1998) and >3% substitution in the ITS regions (Nilsson et al., 2008) usually represent separate species.

Besides the revealed differences in the rRNA chromosomal regions, the Caucasian isolates turned out to differ from the type strains of any species in numerous taxonomically relevant physiological properties (Table 1). No variability of taxonomic traits was detected among the seven isolates. In spite of the close relationship with the teleomorph species S. bombicola, none of the isolates formed spores. They were also mixed in pairs but conjugation was not observed.

The phylogenetic analysis of D1/D2 domain sequences confirmed the association of the Caucasian isolates with the Starmerella clade. The trees obtained (example in Fig. 2) had slightly different bootstrap values but identical topologies. Isolates 11-1071.1 and 11-1071.2 formed a branch with S. bombicola, C. kuoi and numerous uncharacterized isolates. Within the branch, it was separated from both species with strong statistical support. A similar analysis with the ITS1-5.8S-ITS2 sequences could not be performed because these sequences were not available for all species shown in the D1/D2 tree. To accommodate the Caucasian isolates in the taxonomic system of yeasts, the species name Starmerella caucasica sp. nov. Sipiczki is proposed. The alternative possibility could be to act according to the hitherto applied general rule of naming of anamorphic species with ascomycetous affinity and assign the new species to the anamorphic genus Candida. However, it is much more distantly related to C. tropicalis, the type strain of Candida, than to the Starmerella species. Since under the new International Code of Nomenclature for algae, fungi and plants “all legitimate fungal names are now treated equally for the purposes of establishing priority, regardless of the life history stage of the type” (Norvell, 2011), priority is given in this paper to a name that best reflects the phylogenetic relationships.

Although most species of the Starmerella clade have been described from flowers and flower-associated insects (e.g. Lachance et al., 2001a; Nakase et al., 2010; Rosa et al., 2003, 2007), their strains also occur in wine-related environments and substrates with high sugar concentration. For example, S. bombicola is quite common in fermenting grape must (Csoma and Sipiczki, 2008; Sipiczki et al., 2005) where its presence can favorably affect wine quality (Milanovic et al., 2012). C. kuoi was isolated from concentrated grape juice (Kurtzman, 2012). The association of these yeasts both with flowers and with wine-making may be attributed to their ability to tolerate high concentrations of sugar characteristic to both nectar and grape must. All three species can grow in up to 60% glucose (see below).

Somewhat surprisingly, the taxonomically uncharacterized strain AS2.4033, most closely located to S. caucasica on the D1/D2 phylogenetic tree (Fig. 2), was isolated neither from flower- nor from wine-related habitats but from the intestine of a mantis (Shi-An...
Wang, personal communication). As mantises are exclusively predatory insects that feed on pests and other small animals, the presence of AS2.4033 cells in the intestine microflora might be interpreted as demonstrating that the yeasts of this clade can also adapt to very different habitats. However, the most plausible explanation is that the mantis had simply eaten flower-visiting insects carrying AS2.4033 cells. A detailed taxonomic examination should be performed with this strain to find out if it is conspecific with *S. caucasica*.

Numerous species of the *Starmerella* clade, including *S. bombicola* and *C. kuoi*, produce sophorolipids (Kurtzman, 2012; Kurtzman et al., 2010). Although the production of these carbohydrate-based, amphiphilic biosurfactants is not a distinctive, taxonomically relevant property of the *S. bombicola* subclade (e.g. Chen et al., 2006; Tulloch et al., 1968), it might be useful from a biotechnological point of view to test cultures of the *S. caucasica* strains by MALDI-TOF MS for sophorolipid production.

Latin diagnosis of Starmerella caucasica Sipiczki sp. nov.

In medio liquido dextrosum et peptonum et extractum levidensis continente (YPGL) post dies 3 ad 25°C, cellulae ovoidae, ellipsoideae aut globosae, 1-3 × 2-4 μm, singulae et binae, per gemmationem multipolare reproductentes. Coloniae in agaro YPGA post unum mensem ad 25°C, pallide roseae, glabrae, butyroae, cremea, cum margina integer. Pseudohyphae nullae; hyphae verae non fiunt. Ascosporeae non fiunt post 30 dies ad 16 et 25°C in agaro acetico, agaro fa-

<table>
<thead>
<tr>
<th>Property</th>
<th>Starmerella caucasica 11-1071.1<sup>T</sup></th>
<th>Starmerella bombicola CBS 6009<sup>T*</sup></th>
<th>Candida kuoi CBS 7267<sup>T*</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermentation of Raffinose</td>
<td>w, d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Assimilation of L-Sorbose</td>
<td>+</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Assimilation of D-Ribose</td>
<td>w</td>
<td>−, d, w</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of Maltose</td>
<td>w</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of Trehalose</td>
<td>w</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of Salicin</td>
<td>−</td>
<td>−</td>
<td>d</td>
</tr>
<tr>
<td>Assimilation of Arbutin</td>
<td>−</td>
<td>−</td>
<td>d</td>
</tr>
<tr>
<td>Assimilation of Raffinose</td>
<td>w</td>
<td>−, d, w</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of Melezitose</td>
<td>w</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of Meso-Erythritol</td>
<td>−</td>
<td>−</td>
<td>d</td>
</tr>
<tr>
<td>Assimilation of Xylitol</td>
<td>−, w</td>
<td>−</td>
<td>d</td>
</tr>
<tr>
<td>Assimilation of D-Glucitol</td>
<td>+</td>
<td>+, d, w</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of Succinate</td>
<td>−</td>
<td>d</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of Citrate</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of Ethanol</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of Quinic acid</td>
<td>w</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of Nitrate</td>
<td>w</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of Ethylamine</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of Cadaverine</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Assimilation of Glucosamine</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Assimilation of D-Tryptophan</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Growth with 0.01% cycloheximide</td>
<td>−</td>
<td>+</td>
<td>d</td>
</tr>
<tr>
<td>Growth in vitamin-free medium</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Acid production</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Growth at 37°C</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

+: growth; −: no growth; w: weak growth; d: delayed growth, ^T: type strain.

* Data from CBS (Centraalbureau voor Schimmelcultures): http://www.cbs.knaw.nl/collections/BioloMICS.aspx
Glucosum et sucrosum fermentantur. Non fermentatur galactosum, maltosum, trehalosum, melibiosum, lactosum, cellobiosum, melezitosum et raffinosum. Assimilantur D-glucosum, D-galactosum, L-sorbosum, D-ribosum (infirme), sucrosum, trahalosum (infirme), maltosum (infirme), raffinosum (infirme), melezitosum (infirme), glycerolum, xylitolum (variabiliter), D-glucitolum, D-mannitolum, ethanolum, acidum quinicum (infirme), D-tryptophanum, L-lysinum, D-glucosaminum et nitratum (infirme). Non assimilantur D-xylosum, L-arabinosum, D-arabinosum, L-ramnosum, cellobiosum, salicinum, arbutinum, melibiosum, lactosum, inulinum, amyllum soluble, erythritolum, ribitolum, L-arabinitolum, galactitolum, myo-inositolum, D-glucuronicum, acidum DL-lacticum, acidum succinicum, acidum citricum, methanolum, nitritum, ethylaminum, cadaverinum, creatininum et imidasolum. Crescit in medio cum 60% (w/v) glucosum, medio sine vitamino et in 37°C. Non crescit in medio 100 μg cycloheximido mL⁻¹ addito et in medio cum 1% (w/v) acidum aceticum.

Typus 11-1071.¹ (=CBS 12650¹ =CCY 90-1-1¹ =NCAIM Y.02030¹), isolatus ex floris Wisteria sinensis in Baku, Azerbaijan.

Description of Starmerella caucasica Spiczki sp. nov.

Starmerella caucasica (cau'ca.si.ca N.L. nom. fem. adj. caucasica referring to the Caucasus, where the type strain was isolated).

After 3 days of incubation at 25°C in the liquid medium YPGL, cells are ovoid, ellipsoid or round to elongate, 1–3 × 2–4 μm, occur singly or in pairs and propagate by budding (Fig. 1b). On YPGA agar medium, after 1 month at 25°C, the colonies are pinkish, glabrous, butyrous, dull, and soft with an entire margin (Fig. 1a). Neither pseudothraeae nor true hyphae are formed. No sporation was observed on YPGA, acetate agar, malt extract agar, corn meal agar or Gorodkowa agar after 30 days of incubation at 16°C and 25°C. D-Glucose and sucrose are fermented; D-galac-
tose, maltose, trehalose, melibiose, lactose, cellobiose, melezitose and raffinose are not fermented. D-Glucose, D-galactose, L-sorbose, D-ribose (weakly), sucrose, trehalose (weakly), maltose (weakly), raffinose (weakly), melezitose (weakly), glycerol, xylitol (variably), D-glucitol, D-mannitol, ethanol, quinic acid (weakly), D-tryptophan, L-lysine, D-glucosamine (as nitrogen source) and nitrate are assimilated; D-xylose, Glucose, D-galactose, L-sorbose, D-ribose (weakly), L-arabinose, D-arabinose, L-rhamnose, cellobiose, salicin, arbutin, melibiose, lactose, inulin, starch, erythritol, ribitol, L-arabinitol, galactitol, myo-inositol, D-glucuronate, DL-lactate, succinate, citrate, methanol, nitrite, ethylamine, cadaverine, creatine and imidazole are not assimilated. Growth in medium supplemented with 0.01% cycloheximide or with 1% acetic acid is negative. Maximum growth temperature is 37°C. The physiological characteristics presented in Table 2 show that S. caucasica and the most closely related species differ in numerous properties which allow their differentiation by conventional taxonomic tests.

The type strain is 11-1071.1 T (=CBS 12650 T=CCY 390-1-1 T=NCAIM Y.02030 T), which was isolated from a Wisteria sinensis flower in Baku, Azerbaijan.

Acknowledgments

The author thanks Marc-Andre Lachance and Heide-Marie Daniel for advice on the application of the International Code of Nomenclature for Algae, Fungi, and Plants to yeasts. The expert technical assistance of Anita Olah-Csabai is greatly appreciated. This work was supported by the grants OTKA K81792 and TAMOP 4.2.1/B-09/1/KONV-2010-0007.

References

associated with solitary bees in the Atlantic rain forest of Brazil. *FEMS Yeast Res.*, 5, 875–879.

