The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
Full Papers
Gene cloning and expression of fungal lignocellulolytic enzymes from the rumen of gayal (Bos frontalis)
Jing LengXuchuan LiuChunyong ZhangRenjun ZhuHuaming Mao
Author information
JOURNALS FREE ACCESS

2018 Volume 64 Issue 1 Pages 9-14

Details
Abstract

A total of 6,219 positive clones were obtained by constructing a BAC library of uncultured ruminal fungi of gayal, and two clones (xynF1 and eglF2) with lignocellulolytic enzyme activity were selected. The sequencing results showed that xynF1 and eglF2 had 903-bp, and 1,995-bp, open reading frames likely to encode β-xylanase (XynF1) and β-glucosidase (EglF2), respectively. The amino acid sequence of XynF1 had 99% coverage and 95% homology to the endo-β-1,4-xylanase encoded by the cellulase gene of Orpinomyces sp. LT-3 (GenBank accession No. AEO51791.1). The amino acid sequence of EglF2 had 99% coverage and 93% homology to the β-glucosidase encoded by the cellulase gene of Piromyces sp. E2 (GenBank accession No. CAC34952.1). Analysis using the SMART software showed that XynF1 contains a glycoside hydrolase family 11 functional module and a carbohydrate-binding module, while EglF2 contains a glycoside hydrolase family 1 functional module. XynF1 showed the highest relative enzymatic activity, up to 95%, at 45°C and pH 4.2, while EglF2 showed the highest relative enzymatic activity, up to 95%, at 55°C and pH 6.2. In this study, we achieved efficient expression of the xynF1 and eglF2 genes in Pichia pastoris, which laid a foundation for the practical application of the lignocellulolytic enzymes.

Information related to the author
© 2018, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Previous article Next article
feedback
Top