The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Full Papers
Toxicological impact of deltamethrin on growth and nitrogen content of a rice field cyanobacterium Calothrix sp. (GUEco 1002)
Kiran GuptaP. P. Baruah
Author information

2020 Volume 66 Issue 4 Pages 207-214


Cyanobacteria are an important component in the rice field ecosystem and are a well known source of natural biofertilizer. Pesticidal application for the control of pests in rice field soil has led to several environmental problems, and poses a great threat to these beneficial microorganisms. Studies on the impact of pesticides on the diazotrophic growth and survivability of these microorganisms have recently gained much attention. The present paper describes the effects of an iterated use of the insecticide deltamethrin (2.8% EC) on the growth and nitrogen fixation capacity of the filamentous cyanobacterium Calothrix sp. (strain GUEco 1002). This organism has shown a varying degree of sensitivity to the insecticide. For evaluating the deltamethrin toxicity, the test organism was subjected to varying concentrations of deltamethrin i.e. 17.5 ppm, 35 ppm, 70 ppm and 140 ppm based upon LC50 for 20 days. The data obtained in the laboratory revealed that the treatment of the test organism with deltamethrin (17.5–140 ppm) negatively affected its growth, pigments, protein and nitrogen content in a time dose dependent manner. In contrast, carbohydrate content significantly increased with increasing concentrations of deltamethrin, this effect being more prominent at 140 ppm treatment (38%). At this high level (140 ppm), the test organism showed a significant decrease in dry weight biomass (46%), chlorophyll-a (72%), carotenoids (57%), phycocyanin (67%), protein (69%) and nitrogen content (61%) over the control. A little, but insignificant, stimulatory effect on nitrogen content was recorded at 17.5 ppm of the insecticide which however, was the opposite in the case of growth, pigments, carbohydrate and protein content.

Information related to the author
© 2020, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Previous article Next article