Journal of Geography (Chigaku Zasshi)
Online ISSN : 1884-0884
Print ISSN : 0022-135X
ISSN-L : 0022-135X
Review Articles
Estimation of Groundwater Residence Time and Evaluation of the Origin of Groundwater Using Dissolved Noble Gases and Natural Radionuclides with a Long Half-life as Geochemical Tracers
Yasunori MAHARATomoko OHTA
Author information
JOURNAL FREE ACCESS

2012 Volume 121 Issue 1 Pages 96-117

Details
Abstract

 The residence time and origins of groundwater are key factors accounting for its behavior in deep stratum. In this paper, various groundwater behaviors are discussed by focusing on dissolved noble gases and natural radionuclides with a long half-life as geochemical tracers. The concept and history of noble gas hydrology, which is a field of hydrology using noble gases dissolved in groundwater as tools to trace groundwater movements in strata, are summarized by comparing past studies. Current applications and future studies are presented. The main subjects of noble gas hydrology are groundwater dating and estimating the origins of groundwater. The residence time ranging over million years can be determined using excess dissolved 4He concentration and the accumulation rate of 4He calibrated with 36Cl (half-life t1/2 = 3.01 × 105 y). On the other hand, dissolved noble gases (i.e., 3He or 85Kr) should also be used to determine a short range of groundwater residence time of less than 100 years to exploit groundwater resources and overcome water shortages in the 21st century. The origins of groundwater can be estimated from characteristic changes of 3He/4He ratios in regional groundwater flows. Furthermore, paleotemperature, which aims at reconstructing paleo-climate information, is another key subject in noble gas hydrology.

Content from these authors
© 2012 Tokyo Geographical Society
Previous article Next article
feedback
Top