地学雑誌
Online ISSN : 1884-0884
Print ISSN : 0022-135X
論説
阿蘇カルデラ東壁斜面における完新世マスムーブメントの特徴と頻度
宮縁 育夫星住 英夫
著者情報
ジャーナル フリー

126 巻 (2017) 5 号 p. 581-593

詳細
PDFをダウンロード (4924K) 発行機関連絡先
抄録

 Several volcaniclastic deposits discovered at the foot of the eastern wall of Aso caldera, central Kyushu, southwestern Japan, are divided into two types: lahar deposits (Lh1-Lh5 in descending order), which contain abundant subangular to subrounded lithic clasts ( 3.5 m in diameter) set in a sandy to silty matrix, and debris avalanche deposits (DA1 and DA2), which include numerous plastically deformed fragments of tephra (ash and scoria) and soil layers in a homogenous silty to clay matrix. DA2, which underlies a paleosol dated at 5.4 ka (calibrated 14C age), is the largest volcaniclastic deposit observed in the section (more than 2.5 m thick and about 70 m wide). Because the debris avalanche deposits display no evidence that they were transported by water, they are likely to have originated from landslides triggered by intense earthquakes. Tephra chronology and 14C-dating on paleosols along the succession suggest that lahars occurred once over 900 years (6.3-5.4 ka), three times over 1400 years (5.4-4 ka), once over 400 years (4-3.6 ka) and twice (including the 2012 lahar) in the last 3600 years. This evidence indicates that the lahars occurred at an interval of 400-1800 years. In contrast, two debris avalanche deposits exist in the same succession spanning the last 6300 years. Including landslides and associated debris avalanches triggered by the 2016 Kumamoto earthquake (Mj 7.3), landslides generating debris avalanches in the Aso caldera occurred at least three times in the last 6300 years. This may suggest the frequency of large earthquakes triggering debris avalanches in the central Kyushu region, which has many active faults.

著者関連情報
© 2017 公益社団法人 東京地学協会
前の記事 次の記事

閲覧履歴
feedback
Top