Journal of Geography (Chigaku Zasshi)
Online ISSN : 1884-0884
Print ISSN : 0022-135X
ISSN-L : 0022-135X
Review Articles
Late Cenozoic Igneous Activity and Crustal Structure in the NE Japan Arc: Background of Inland Earthquake Activity
Takeyoshi YOSHIDAReishi TAKASHIMATakeshi KUDOOky Dicky Ardiansyah PRIMASumire MAEDAKeisuke YOSHIDATomomi OKADASatoshi MIURATomohiro TAKAHASHIYoshitaka NAGAHASHIKyoko KATAOKA
Author information
Supplementary material

2020 Volume 129 Issue 4 Pages 529-563


 GNSS data analyses reveal that recent large inland earthquakes in the Northeast (NE) Japan occurred in strain concentration zones. Seismic low-velocity anomalies, indicative of mechanically weak materials (weak zones), are estimated below the strain concentration zones at depths corresponding to the lower crust. Such crustal structures with weak zones have been formed as an accumulation of tectonic movements and igneous activities since early Miocene. Volcanic activity in the NE Japan during the Late Cenozoic Era can be subdivided into three prominent stages: continental margin volcanism stage, back-arc basin opening stage, and island-arc volcanism stage. The crustal structure of the NE Japan arc is characterized by many rift structures and large transcurrent faults formed during the back-arc basin opening stage, and by many large caldera volcanoes formed during the island-arc volcanism stage. The relationships among mechanically weak crustal structures, present strain localizations, earthquake distributions, and geological characteristics including rift structures, large transcurrent faults, volcanic belts, and caldera volcanoes, are clarified using various geophysical data such as gravity anomalies, seismic velocity structures, strain rates, and epicenter distributions. The results show that strain concentration zones and inland earthquake epicenters have close spatial relationships with geological structures such as rift boundary faults, large transcurrent faults, caldera structures, and volcanic belts. It can be interpreted that fluids migrating upwards from lower crustal weak zones below rifts, volcanic belts, or calderas, effectively weakened the crust due to its high pore fluid pressure, and caused earthquake ruptures under horizontal compression.

Information related to the author
© 2020 Tokyo Geographical Society
Previous article Next article