皮脂汚れと牛脂汚れの洗浄性比較
木綿メリヤス肌着地について

Comparisons of Detergencies between Sebum Soils and Beef Tallow Soils on Cotton Underwears

平尾あや
Aya Hirao

I 緒言
皮脂を含む汚れの洗浄において、ステアリン酸当量として測定される皮脂分の除去率を単分子膜レンズ法によって推定する目的で、先に「皮脂の肌着への着着およびその除去に関する研究（第11報）皮脂汚れの洗浄」を報告したい。その結果、洗剤主成分（ABS並びにSDS）による皮脂分の洗浄効率は50％程度で、比較的低率であることを知った。また、皮脂の洗浄効率値のひろさや、被験者間にも同一人の実験の度ごとに大きく、洗剤間（ABSとSDS）にも被験者間（6名）にも有意差はみとめられず、要因間の差を検定することはできなかった。

この結果を考慮に入れて今回は、モデル油性汚れの油脂分除去に及ぼす洗浄液の濃度・洗剤の種類・助剤の濃度の影響を追求すると共に、天然汚れの油脂分の除去とを比較検討することとした。すなわち、人工汚染布作製用に用いられる牛脂と、着用により付着した皮脂汚れの洗浄を比較することとし、木綿メリヤス肌着地における両汚れの洗浄性の差違を明らかにしようと試みた。

B. A. Scott2)、木綿からの汚れの除去において、洗剤主成分ABS 0.08％；トリリン酸ソーダ0.4％の溶液で試験した結果を示しているが、この場合、中性油脂が融点以下では少量しか洗浄で除去されず、融点で急激に除去量の増えるローリングアップの結果を明瞭にしている。

藤井徹ら3)は、天然汚染布の洗浄実験から推計学的に有意な結果を求めるうえは困難であるが、天然の汚染布では総合リン酸塩の助剤効果が明らかに認められ、一方現行の人工汚染布では逆に働き、洗浄効率低下をもたらすという事実を述べている。

石崎4)の研究によれば、非イオン活性剤（Polyoxyethylene Alkyl Ether）と無機配合剤の効果について、Na₅P₃O₁₀の優秀性を認め、少量の添加（80：20）で良好な結果を得ている。

* 愛知教育大学

藤井清子ら5)も Builder の効果について、その濃度が洗浄効率に影響することを述べている。

なお、福山ら6)によれば、標準汚染浴中のカーボンプランクを鉄のオキシン錠体（Ferric Oxinate）をおきかえたモデル汚れについて、非イオン合成洗剤にトリリン酸塩添加の勝れた助剤効果をあげ、さらに、高温洗浄の優秀な結果を示している。

洗浄試験においては、人工汚染成分中の固形汚れのモデルであるカーボンプランクに問題があると考えられ、そのカーボンプランクについての研究7)ならびにカーボンプランクに代る固形汚れの研究8)などがなされている。

これに対して著者は、さらに、人工汚染成分中の動物油のモデルである牛脂の洗浄に疑問をもとし、人体より挿出される複雑な成分である皮脂と比較して、両者の汚染布の洗浄性の挙動を検討しようと考えた。

そこで、一般人の肌着として最もよく用いられている木綿メリヤス肌着地を試布として、これに着着させた両者汚れ（皮脂と牛脂）を比較洗浄するに当り、ここに引用した諸報の中にふれた洗浄条件のうち、1) 洗浄温度、2) リン酸塩添加濃度に重点をおき、両者を比較検討することとした。

II 実験方法
1) 実験布 試布とするために用いた木綿メリヤス肌着地は、先の実験（皮脂の肌着への着着およびその除去に関する研究の第9、10、11報）に用いたものと同一の糸メリヤス・フライス地で、これを7×14cm²（縦方向に長く）に切って、32時間以上ペンゼンで抽出して試布とした。

2) 汚れ布作製 a) 牛脂汚れ布 前記試布に、牛脂（極度硬化牛脂）0.5％ベンゼン溶液を1cc（牛脂量5 mg）をメスビペットにて滴下着着させ、自然乾燥後デンケーター中に保存した。この汚れ布作製は対照実験の皮脂汚れ布作製（着用）時と平行して、同一実験室内温湿度時
皮脂汚れと牛脂汚れの洗浄性比較

に汚れ付着をすることとした。b) 皮脂汚れ布、前記試布2枚を一定の木綿メリヤス肌着の面に左右対称的にと
じつけて実験用肌着とし、これを着用するに当ては、
被験者の背をアセトン及びエトーテルで清拭乾燥した。こ
の着用前の上にある一定の実験用白衣を重ね着して3時間
椅子に座か、背部を椅子の木フレに着させて左右対
象汚の平等測に留意した。左右の汚の平等性の必要
なことは、汚布の一方を抽出して皮脂汚れ量を知り、他
方を洗浄して汚布に残る油分量を測定して洗浄効率の
計算をしなければならないためである。この皮脂汚れ布
は、脱衣後自然乾燥し、デシケーター中に保存（牛脂汚
れ布と同一時間または同一日数）した。

3) 洗浄試験 ATLASのLaunder-O-Meterによる
常法洗浄。洗剤添加成分（ABSとSDS）0.1%による洗浄
とこれにトリポリレート酸ソーダ（Na₂P₂O₁₀）0.1%、0.3
%添加液洗浄とを行う。洗浄温度は20、40、60℃とし、
主として40、60℃におけるリン酸塩濃度の影響をみた。
汚布作製から洗浄までの経過時間は、1日（20時間）後
のもの（実験1）、汚布作製後1～2週間のもの（実験
2）をそれぞれ使用した。洗浄に使用した水は蒸留水で
ある。

4) 汚れの測定 ミクロスケールを用いてベンゼン
抽出（4時間）し、単分子膜レンズ法、ステアリン酸当
量で示す既報の方法を用いた。

5) 洗浄効率の算出

$$D = \frac{S_o - S_w + C}{S_o} \times 100$$

ただし S_o = 洗浄前の布上に油分汚れ量 mg/98cm²布
S_w = 洗浄後の布上に油分汚れ量 mg/98cm²布
C = 洗浄中に含有される不純分油成分の洗浄液
中から布に吸収される油分量の補正値
mg/98cm²布

注）洗浄中の不純分収着量については、第1表に示
す。

6) 皮脂汚れ布作製のための被験者 身長 142～165
cm、体重39～64kg、年令18～22才の本学家政学教室1
〜4年の女子学生102名である。

7) 実験期間 昭和41年3〜7月の5ヶ月間に行た
り、皮脂汚れの比較的多く発汗の多い時期において行っ
た。

8) 実験は遂に区分した。

実験1) 6名の被験者の皮脂汚れ布をつくり、牛脂汚れ
布6枚を交互に洗浄、洗剤ABS0.1%、洗浄温度20、
40、60℃の3段階に分けて洗浄実験を行い、実験の繰返しは

<table>
<thead>
<tr>
<th>表 第1表 洗剤中の不純分収着（%）</th>
<th>収 着 量 (mg/98cm²布)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td></td>
</tr>
<tr>
<td>40℃</td>
<td>0.1</td>
</tr>
<tr>
<td>60℃</td>
<td>0.1</td>
</tr>
<tr>
<td>SDS</td>
<td></td>
</tr>
<tr>
<td>40℃</td>
<td>0.1</td>
</tr>
<tr>
<td>60℃</td>
<td>0.1</td>
</tr>
</tbody>
</table>

1) 洗浄濃度は0.1% |
2) 実験1のABS、20℃洗浄の場合の収着量は0.00mgであった。

3) 実験2 96名の被験者の皮脂汚れ布と96枚の牛脂汚れ布と
をそれぞれ4枚宛24回に分割し、皮脂と牛脂の汚れ布
を4:4の8枚を1組として次の洗浄を行い、繰返し2回
の実験をして4+4の8枚の測定値を求めた。洗剤は
ABSとSDSの濃度0.1%, リン酸塩添加濃度0, 0.1,

第1図 牛脂・皮脂汚れの洗浄における温度影響

(ABS 0.1%)

(107)
家政学雑誌 Vol. 18 No. 2 (1967)

第2表 洗浄効率：洗剤・温度・トリポリリン酸塩濃度の影響

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>ABS</th>
<th>SDS</th>
<th>ABS</th>
<th>SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>洗剤濃度（％）</td>
<td>53.6</td>
<td>55.0</td>
<td>59.2</td>
<td>55.3</td>
</tr>
<tr>
<td>59.6</td>
<td>57.9</td>
<td>58.8</td>
<td>53.4</td>
<td>68.4</td>
</tr>
<tr>
<td>54.1</td>
<td>57.4</td>
<td>55.4</td>
<td>55.0</td>
<td>67.9</td>
</tr>
<tr>
<td>54.7</td>
<td>57.6</td>
<td>59.0</td>
<td>57.9</td>
<td>67.2</td>
</tr>
<tr>
<td>49.3</td>
<td>56.8</td>
<td>59.2</td>
<td>56.2</td>
<td>65.6</td>
</tr>
<tr>
<td>53.6</td>
<td>54.4</td>
<td>58.8</td>
<td>59.3</td>
<td>67.4</td>
</tr>
<tr>
<td>55.1</td>
<td>57.4</td>
<td>56.0</td>
<td>54.7</td>
<td>67.4</td>
</tr>
<tr>
<td>56.8</td>
<td>57.9</td>
<td>58.4</td>
<td>70.1</td>
<td>67.7</td>
</tr>
<tr>
<td>平均</td>
<td>54.6</td>
<td>56.8</td>
<td>58.1</td>
<td>57.7</td>
</tr>
<tr>
<td>標準偏差</td>
<td>2.9</td>
<td>1.4</td>
<td>1.5</td>
<td>5.3</td>
</tr>
</tbody>
</table>

皮脂

<table>
<thead>
<tr>
<th>温度（℃）</th>
<th>ABS</th>
<th>SDS</th>
<th>ABS</th>
<th>SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.1</td>
<td>84.0</td>
<td>71.6</td>
<td>86.0</td>
<td>66.7</td>
</tr>
<tr>
<td>53.2</td>
<td>67.0</td>
<td>71.9</td>
<td>76.7</td>
<td>88.0</td>
</tr>
<tr>
<td>68.1</td>
<td>84.0</td>
<td>71.6</td>
<td>86.0</td>
<td>66.4</td>
</tr>
<tr>
<td>49.5</td>
<td>63.7</td>
<td>66.4</td>
<td>88.5</td>
<td>67.5</td>
</tr>
<tr>
<td>50.0</td>
<td>58.1</td>
<td>67.6</td>
<td>74.3</td>
<td>62.6</td>
</tr>
<tr>
<td>42.5</td>
<td>87.5</td>
<td>68.2</td>
<td>63.2</td>
<td>54.8</td>
</tr>
<tr>
<td>平均</td>
<td>53.6</td>
<td>69.6</td>
<td>68.5</td>
<td>73.4</td>
</tr>
<tr>
<td>標準偏差</td>
<td>8.7</td>
<td>11.4</td>
<td>2.4</td>
<td>11.6</td>
</tr>
</tbody>
</table>

洗剤濃度は0.1％

第2図 洗剤・温度・リン酸塩濃度の影響 洗剤濃度（0.1％）

皮脂

牛脂

(108)
皮脂汚れと牛脂汚れの洗浄性比較

0.3％、洗浄温度40、60℃とした。

III 実験結果と考察

1) 実験1の結果を第1図に示す。牛脂汚れの場合、20℃と40℃の洗浄結果にはほとんど差がないが、60℃では著しく洗浄効率の上昇をみた。皮脂汚れの場合、洗浄温度による結果の差はほとんど認められなかったが、高温洗浄ほどわずかでむしろ洗浄効率の低下傾向があらわれた。今回使用の牛脂（極度硬化牛脂）の融点は、50～55℃を示し、牛脂洗浄における20℃の結果のよい点は、先に述べたB.A. Scottの観察と関係あるものと推察される。

2) 実験2については、その結果を第2表・第2図とし、

第2表によれば、8枚の洗浄において、皮脂汚れの場合の洗浄効率のひきさは何れの洗浄においても大きいかが、牛脂汚れの場合にはリン酸塩添加液の洗浄効率のひきさが小である。

第2図によれば、ABS・SDS共に洗浄温度依存、牛脂と皮脂の汚れに対し正反対にはたらき、牛脂では高温のほうが洗浄効率が高く、皮脂ではその対反による傾向がみられた。リン酸塩濃度の影響は、牛脂と皮脂において傾向が異なり、皮脂汚れのSDS洗浄に特異性があらわれた。牛脂のABS洗浄におけるリン酸塩影響は濃度の高い側に向いその効率上昇をみ、SDSではリン酸塩添加濃度0.1％の効力が高まった。皮脂のABS洗浄におけるリン酸塩濃度0.1％添加の効効が高く、SDSではリン酸塩添加40℃の場合効力を低下させ60℃においてもほとんどその効果は認められなかった。

IV 結 論

人工汚染液中の牛脂と着用により汚れた皮脂汚れの洗浄性を比較する目的で実験を行い、次の結論を得た。牛脂と皮脂の汚れのそれぞれ付着した木綿布の洗浄性は、洗剤、洗浄温度、リン酸塩濃度などの影響について、相互にかなり異なるものであることを知った。

V 総 括

洗浄試験のための人工汚染液中には動物油として牛脂が加えられている。その牛脂と皮脂の汚染布がそれぞれ洗浄の諸条件に関して類似した挙動を示すかを調べる目的でこの実験を行ったが、両者の洗浄性には著しい差のあることが判明した。人工汚れと天然汚れの洗浄性の一致しないことは富山ら10も報告しており、前文にも述べたように洗浄についての再検討の要望が多い。この両者汚れの洗浄性の一致しない点として、その原因が人工汚染液中のカップリングナックにあるのか、牛脂にあるのか、あるいはこれら以外の他の成分の影響によるのか、あるいはまた、それら交互作用の影響によるのかなど、人工汚染液中の各成分の基礎的性質から追求の要を感ずるものである。現行の人工汚染布を用いての洗浄試験が実際洗浄と完全には一致しない原因の一つが、この実験の皮脂汚れと牛脂汚れの洗浄性の相違にみられるように、牛脂にあるのかも知れないともえる。

本実験にあたり懇切な指導を頂きましたえて水子大学矢部章彦先生に深遠なる感謝の意を表します。

試験・洗剤を寄贈された次会社に対し、厚く御礼申上げます。

名鉄百貨店
花王石鹸KK
ライオン油品KK
第一工業製薬KK

被験者となって実験に協力された学生102名ならびに実験の補助者となって協力された諸君（伊与田、神谷、佐野、田中、氏原、平川、富田、山本、守田）の助力に感謝する。

（昭和41年9月7日受理）

参考文献

1) 平尾啓人：家政学雑誌、17、4、222（1966）
2) B. A. Scott：J. Appl. Chem., 13、133（1963）
3) 藤井徹也、西田敏、古川三郎、木下健：第16回日本家政学会研究発表、昭和39年9月5日講演、同要旨集p.17（日本家政学会）
4) 石崎大輔：家政学雑誌、17、2、71（1966）
5) 藤井清子：家政学雑誌、12、2、131（1961）
6) 奥山春彦、藤井富美子、辻川昌子、森田宏枝：大阪市立大学家政学部紀要、12、29（1964）
7) 多田千代、中沢ミカ：新潟教育学部長岡分校紀要、9、37（1963）、新潟教育学部紀要、5、98（1963）、県立新潟女子短期大学紀要、1、24（1964）
8) 水野上与志子：広島女子短期大学研究紀要、14、（1963）
9) 平尾啓人：家政学雑誌、12、224（1961）
10) S. TOMIYAMA and M. IIMORI：J. Am. oil Chemist's Society, 42、5、449（1965）

（109）