The Effects of Heating Rate and Temperature on Color and Taste of Caramel Sauce

The consistency, color and taste of caramel sauces obtained by heating sugar up 190–230°C at 10°C intervals at the high, medium and low heat, were examined with the change of temperature.

The results were as follows:
1) At the low heat, the caramel reaction was slow, while the coloration of caramel sauce occurred at lower temperature than at the high heat.
2) The consistency of caramel sauce suitable for custard pudding was possessed when the weight ratio of the caramel sauce to the sugar was 1.10–1.15 times.
3) It was shown from a sensory test that, in the cases of the high, medium and low heat, the caramel sauces heated up to 210–230°C, 220°C and 210°C, respectively were preferred in respect of the color and taste.

1. 緒 言
カラメルソースは適度の色力・色調・苦味・粘度をもっていることが必要であるが，一定の品質を得るための調理条件を設定することがむずかしく，食品工業界でも経験と熟練にゆだねられているという。

ショ糖やブドウ糖を高温に加熱すると熱分解し，複雑な重合反応を起こして褐色のカラメルになることはよく知られており，示差熱分析による研究などがみられる。しかし火力（加熱速度）や加熱温度による色や粘度の変がい，ソースの仕上がり濃度などについての研究報告は少ない。そこで今回この問題をとりあげ，火力と加熱最終温度がカラメルの着色・粘度・味などに与える影響および作りやすい調製法を検討した。

2. 実 験
1) 試料およびカラメルソースの調製
砂糖：上白糖（和田製糖製），加熱器具：アルミ打ち出しなべ（口径 15 cm，容量 900 ml），熱源：都市ガス（ガスコンロ），ガスメーター：湿式ガスメーター（晶川計器製作所），フローメーター：（小島製作所），温度計：熱電温度指示計（飯尾電機製 EM-111 型）
予備実験の結果，調製しやすい砂糖の量を 100 g とし，これを水 60 ml とともに塩に入れ，火力は弱火（ガス流量 3 l/min），中火（2 l/min），弱火（1 l/min）の 3 通りとし，均一に加熱するために，ときどきなべをゆり動かしながら加熱し，最終温度を 190°C から 10°C 間隔で 230°C までとした。温度測定は，液層（1.2 cm）の中央にカップルの先端を挿入し，なべをゆり動かして液温を均一にして測定した。最後にささ水 30～45 ml を加え，一定重量に仕上げた。仕上がり重量は結果 1）にもとづきとくにことわらない限り 115 g とした。
実験方法

2) 実験方法
i) カラメルソースの仕上がり重量の検討
カラメルソースの仕上がり重量を砂糖の重量の1.00～1.25倍になるように調製し、15 gずつピッカー（100 ml容）に入れ室温まで放置した。一方市販全卵、牛乳および砂糖を1:2:0.6の重量比で混合してカスタード液を調製した。60℃に加温したカスタード液70 gを前記のソースの上に静かに注入し、90±2℃で15分煮し、カラメルソースとカスタードの境界線を写真撮影した。また、カラメルソースおよびカスタード液の比重は10 mlのメスシリンダーで体積をはかり、その重量から求めた。

ii) 官能検査
強火で、最終温度を190, 200, 210, 220, 230, 235℃の6通りとして作ったカラメルソースを用い、前述のカスタード液を用いて、常法によりカスタードブニングを調製し、1/2切れずつ供試料とした。パネルは女子栄養短期大学職員25名、平均年齢35歳、学生50名、平均年齢20歳、男女の比率は同じとした。検査は、カラメルソースの色の濃さおよび甘さについて7段階の評点法により行った。

iii) カラメルソースの色の測定
① 肉眼による比較：火力別、温度別に調製したカラメルソースを図4のような白色筒器の皿に注ぎ、色を肉眼で比較した。
② L, a, b の測定：色差色差計（日本電色工業㈱ ND 10ID 型）を用いて5倍に希釈したカラメルソースの透過色をUCS系L, a, b値で求めた。
③ 色価の算定：色価を国際砂糖分析統一委員会（International Commission for Uniform Methods of Sugar Analysis）から示された method 2 colorの方法を用いて算出した。

ICUMSA method 2 color

\[1,000 \times \log T) / 0.01B_s \times S \times d\]

T: 560 nm の透過率、Bs: 被検液のレフリックス
（屈折計で測定した固形物 %）、S: 被検液の比重、d: 吸収セルの厚さ（10 mm）

試料は上記と同様5倍に希釈し、吸光度は分光光度計（島津製作所 101型）、糖度は手持ち屈折計（菊池商事㈱）で測定した。比較は“各種濃度の焦糖溶液の比重ならびにポメ度表”40によった。

iv) カラメルソースのpHの測定
カラメルソースのpHは5倍に希釈した試料を、pHメーター（日立製電極M5型）で測定した。

Ⅷ) カラメルソースの粘度の測定
回転粘度計（東洋産業㈱ BH（HH 型））を用い、カラメルソースを40℃の恒温水槽に入れて30分後に測定した。モーターはNo.4、回転数は20 rpmとした。

vi) 火力別による温度履歴
カラメル調製時の温度上昇曲線を火力別に追跡した。あわせてカラメルソースの作りやすさを検討するために途中で火力を変更する方法も試みた。すなわち、最初強火で加熱し着色しはじめる160℃から弱火にした場合、煙が出はじめ190℃から弱火にした場合の温度履歴、適直な着色となるまでの加熱時間を検討した。

3. 結果および考察

1) カラメルソースの仕上がり重量
カラメルソースを容器に入れ、その上にカスタード液を注入したとき、両者が混じらないようにするためには、カラメルソースの比重をカスタード液よりも大にする必要がある。またカスタードブニングを型から出す場合、カラメルソースは流動性がなければならない。そこでカラメルソースの適直な密度をつかむために、仕上がり重

<table>
<thead>
<tr>
<th>評点 細度</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>味</td>
<td>非常に苦</td>
<td>やや苦</td>
<td>甘</td>
<td>やや甘</td>
<td>非常に甘</td>
<td>甘</td>
<td></td>
</tr>
<tr>
<td>色</td>
<td>非常に濃</td>
<td>やや濃</td>
<td>うす</td>
<td>ややうす</td>
<td>非常にうす</td>
<td>うす</td>
<td></td>
</tr>
</tbody>
</table>

図3. 官 能 検 査（評点法による）

味
学生（50名）: △ ▲
職員（25名）: ○ ●
加熱速度や加熱温度がカラメルソースの色・味に及ぼす影響

図 1. カラメルソースの濃度の違いによる加熱後のカスタードの状態（境界線）

図 2. 官能検査供試料（強火加熱のカラメルソース使用）

図 4. 火力と温度の違いによるカラメルソースの色
表 1. カラメルソースの pH，明度，色価

<table>
<thead>
<tr>
<th>項目</th>
<th>火力別</th>
<th>加熱温度（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>190</td>
<td>200</td>
</tr>
<tr>
<td>pH*1</td>
<td>強火</td>
<td>5.0</td>
</tr>
<tr>
<td>中火</td>
<td>4.5</td>
<td>4.1</td>
</tr>
<tr>
<td>弱火</td>
<td>4.2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>強火</td>
<td>90.2 ± 3.6</td>
</tr>
<tr>
<td>中火</td>
<td>94.6 ± 1.9</td>
<td>92.8 ± 0.9</td>
</tr>
<tr>
<td>弱火</td>
<td>94.0 ± 1.1</td>
<td>84.4 ± 5.9</td>
</tr>
<tr>
<td>色価*2</td>
<td>強火</td>
<td>270.3 ± 117.6</td>
</tr>
<tr>
<td>中火</td>
<td>118.0 ± 63.9</td>
<td>175.9 ± 63.3</td>
</tr>
<tr>
<td>弱火</td>
<td>181.8 ± 54.8</td>
<td>345.2 ± 113.1</td>
</tr>
</tbody>
</table>

*1 加熱しない砂糖液の pH は 7.0
*2 n=5

量がもとの砂糖の 1.05 倍以下では固すぎてピーカーの底部に残り、一方 1.2 倍以上では、図 1 のように境界線がぼやけるので、1.10～1.15 倍のものが適当と考えられる。1.15 倍のカラメルソースの比重は 1.44、カスタードの比重は 1.09 であった。

2）官能検査

図 2 のような試料を調製し、1/2 個づつパネルに供した。その結果を図 3 に得点の平均値および 95 ％の信頼限界で示した。味・香ともによいと判定されたものは 201～230℃ 加熱のものであった。190℃ に加熱したもののは色がすくすく、味はやや甘いという答であった。この傾向は職員よりも学生のほうが強かった。なお、受験の専門家に意見を求めたところ、やはり 220℃ あたりの色がよいということであった。

3）カラメルの着色

図 4 にみられるように強火の場合は、温度上昇速度が急激であるため弱火のときより高温で着色が始まりその後、急激に着色が進み、235℃ 以上では炭化する。弱火では、温度上昇が緩慢なので強火にくらべ、比較的低温で着色し、ほぼ 215℃ で炭化が進む。

着色反応は温度と時間の関数として進み、弱火ではより長い時間加熱されるので、より低い温度で反応が進行したものと考えられる。

今回の実験では従来一般的に適温とされている 180℃ では、いずれの火力の場合ともカラメルの色や香りがうすく甘味が強かった。これは、転化糖含有量の変化（日新製糖㈱：10 年前 1.2 ％、現在 1.0～1.8 ％）や香料の変化（甘味よりも香りや苦味などを好む傾向）などによると思われる。今回は実際の調理にもとづいて上白糖を用いや、砂糖の種類によるちがいや、砂糖の使用量によるちがいについて今後検討したいと考えている。

4）カラメルソースの L, a, b 値と色価

L, a, b 測定の結果は、官能検査でよいとされた強火 220℃ の場合は、0.9 < a < 2.0, 44 < b < 47 であり、これに近い a, b の値を示したのは、中火では 220℃ 的場合で、2.0 < a < 4.3, 46 < b < 48 であり、弱火では 210℃ の場合で、その a, b は、1.0 < a < 1.6, 42 < b < 47 の範囲にあった。また、これらは表 1 のようにいずれも色価が 600 前後、L が 80～90 である。肉眼による判定（図 4）でも強火で 220～225℃, 中火 220℃, 弱火 210℃ の場合がよかった。

5）カラメルソースの pH

カラメルソースの pH は、表 1 のように加熱温度とともに低下した。これは加熱によって還元糖が分解し酸性物質が生成するためと考えられる。また同じ温度では、火力が弱いほど pH が低くなっている。これは着色の場合はときに反応時間が長いとよぶと思われる。

6）カラメルソースの粘度

加熱温度が高くなるほど、いずれの火力の場合ともカラメルソースの粘度は低下する。これは糖の分解のため
加熱速度や加熱温度がカラメルソースの色・味に及ぼす影響

図 6. カラメルの火力別温度履歴
ガス流量：強火 3 l/min、中火 2 l/min、弱火 1 l/min

図 7. カラメルの加熱過程における火力の変更と最終温度
ガス流量：—— 3 l/min（強火）、—— 1 l/min（弱火）

と考えられる。ただし、中火の 190°C では 200°C よりも粘度が低くなっている。また加熱温度が高く、粘度が低下するにつれて、データのばらつきが少なくなる傾向があるが、210°C の場合のみばらつきが大きくなくなっている。これらの理由については今後検討したいと考えている。

7) カラメルの火力別温度履歴
図 6 のように、強火、中火で加熱した場合は、加熱をはじめてから約 1.5 分後に 105°C に達し、しばらく温度の上昇が停止したあと強火では約 3 分後、中火では 5 分後より急に温度が上昇しはじめめる。再び、強火では 235℃、中火では 225℃ あたりから温度の上昇が緩慢となる。弱火では加熱をはじめてから約 10 分後に 105°C に達し、約 12 分後から温度が上昇するが、その速度は、強火、中火にくらべてきわめて緩慢で、次に上昇の停半の温度も 215℃ と低い。これは 3) のカラメルの火力による着色の違いを実証している。

いずれも 105°C で温度の上昇が停止するの、水分の蒸発のための吸熱反応と考えられ、200°C 以上で一度上昇値がみられるのは糖の分解、重合が進むためと推測される。古川ら11 の示差熱分析によると吸熱のビーグと一致しないのは加熱速度の影響によるところが大きいと考えられる。

8) 作りやすさからみたカラメルの調製法
図 7 のように 160°C または 190°C まで加熱で加熱し、その後弱火で切りかえると、ちょうどよい色に仕上がりの温度は前者で 220°C、後者で 215°C である。終始強火で加熱する場合にくらべ、弱火で切りかえると温度の上昇が緩慢になるため終点がつかみやすい。ことに 160°C から弱火で切りかえた場合、温度上昇が緩慢であり、また終始弱火加熱の場合にくらべ加熱時間は 1/2 以下に短縮される。

4. 要 約
砂糖液の加熱時における火力と最終温度がカラメルソースの色や味のような関係にあるかを明らかにするため実験を行い、次のような知見を得た。
1) カラメルソースの濃度は、その仕上がり重量がもとの砂糖重量の1.10～1.15倍がよい。
2) 官能検査の結果、強火では210～230℃加熱のもののが色・味ともに評価が高かった。これに該当するのは、中火で220℃、弱火では210℃加熱のものであった。
3) カラメルの色は弱火で210℃、中火で220℃、強火で230℃になると急変しやすく、ばらつきが大きく再現性に欠ける。
4) カラメルソースの色価は600前後が適当である。
5) カラメルソースのpH は、加熱温度の上昇とともに低下する。
6) 火力は強火よりも弱火の方が温度が緩慢に上昇し、低温で着色する。
7) カラメルの調製法としては160℃まで強火にし、その後弱火で加熱するのが、所要時間や調理操作上よいと考えられる。

終わりに、種々のご教示をいただきました製糖工業会技術研究所長鶴田 慶氏、実験にご協力いただきました本学応用物理学研究室の原万喜子氏、成人栄養学研究室石井 和氏に感謝申し上げます。

（昭和58年8月27日受理）

引 用 文 献
2) 中島田秀子, 新谷寿美子: 大妻女子大学家政学研究機関誌, 8, 33 (1965)
5) 渋口栄次郎, 植井芳人: シュガーハンドブック, 朝倉書店, 東京, 702 (1964)