いも類の食物繊維量の加熱調理による変化

津久井亜紀夫, 鈴木敦子, 小口悦子*, 永山スミ*

(東京家政学院短期大学, * 東京家政学院大学家政学部)
平成6年1月12日受理

Effect of Cooking on Dietary Fiber Contents in Potatoes
Akio TSUKUI, Atsuko SUZUKI, Etsuko OGUCHI* and Sumi NAGAYAMA*

Tokyo Kasei Gakuin Junior College, Chiyoda-ku, Tokyo 102
* Faculty of Home Economics, Tokyo Kasei Gakuin University, Machida, Tokyo 194-02

Keywords: sweet potato 甘藷, potato 馬鈴薯, taro 里芋, yam ヤマノイモ, total dietary fiber 全食物繊維, heat cooking 加熱調理。

1. 緒 言
食物繊維（以下 DF）には各種機能性のあることが認められてきており、そのため各種食品の DF 量が明らかにされている。食品の DF 量の加熱調理による変動については、吉田らが野菜の不溶性 DF の調理による変動について検討し、また高橋らも日常使用されている15種類の野菜について、生および加熱後の DF 含量、ならびにその変化を Asp からの酵素・重量法を用いて、不溶性 DF, 可溶性 DF とに分けて検討している。著者はいも類について甘藷（Ipomoea batatas Poir.）の DF（セルロース, ヘミセルロース, リグニンおよびペクチン）を品種別、塊根肉色別、収穫年度別および栽培別に Southgate 法を用いて定量し、また甘藷葉柄の DF 量を品種別、他の野菜と比較、部位別、年度別および茹でる前と後について検討し、茹でる加熱操作で DF 量が減少したことを報告した。しかしにも類の DF 摂取量は DF 総摂取量に対してかなりの割合を占めているが、いも類の DF が加熱調理によりどのように変動するかについては、Englystらが馬鈴薯（Solanum tuberosum L.）について行っている以外ほとんど検討されていない。そこで、著者らは甘藷、馬鈴薯、里芋（Colocasia esculenta Schott.）およびヤマノイモ（Dioscorea japonica Thunb.）の4種類6品種の各種いも類を蒸す、茹でる、焼く、電子レンジ加熱および油で揚げるなどの操作で加熱調理して、加熱調理前後の DF 量を測定し、その変動について検討した。

2. 実験方法
(1) 実験材料
甘藷（高系14号、赤紅）はつくば農業研究センターで1990年10月に収穫した。馬鈴薯（男爵、メークイン）は同年6月に、里芋（土佐）は同年9月に、ヤマノイモ（長いも）は同年10月に、それぞれ東京都千代田区三番町内のスーパーマーケットで購入した。以上4種類6品種の各種いも類を試料とした。
(2) 試料の調製
各種いも類は水洗いし、ペーパータオルで表面の水分を拭き取り、加熱調理前（以下生という）の場合は剥皮後包丁で細切りしホモジネートして試料とした。加熱調理後の場合は日常の調理方法に準じて調理した。つまり甘藷および馬鈴薯は剥皮後、ヤマノイモおよび里芋は皮ごと、それぞれ加熱調理した。それぞれの加熱調理時間は蒸すが100℃で20分間、茹でるが沸騰水中で15分間、焼くが250℃のオーブン中で25分間、揚げるは160℃の油炸中で10分間、電子レンジ加熱

(1029)
日本の家政学会誌 Vol. 45 No. 11 (1994)

（三菱オープンレンジ RO-130MT）は5分間行い，いずれも食用できる状態であった。加熱したヤマノイモと里芋は剝皮後ホモジネートして定量にし DF 定量用の試料とした。

(3) 水分の定量
各種いも類を約10 g採取し，常圧真空加熱乾燥法（100℃）により定量した。

(4) DF の定量
全 DF (TDF) 量，中性界面活性剤繊維量 (NDF)，酸性界面活性剤繊維量 (ADF) および ADF 中のリグニン量の定量は前報①に準じて行った。これらの定量値より，TDF と NDF の差を前報③と同様に拡散性的溶性 DF（P-SDF）と ADF と DF の差をヘミセルロース量および ADF とリグニンの差をセルロース量として算出した。P-SDF 量は大西ら②が酵素-重量法で測定した野菜類の不溶性 DF（IDF）量は NDF より1.1～1.4倍多くなると述べており，これらは IDF が中性界面活性剤試薬により，沸騰下で一部分解し，溶解，除去されたと考えられているので，実際の溶性 DF より多くなると考えられる。

(5) 統計処理法
実験結果は平均値±標準偏差で表し，2 群間の有意差検定は Student's t-test により行い，5%以下の危険率有意とした。

3. 結 果
(1) 各種いも類中の DF 量
4 種類 6 品種の各種生いも類の水分，TDF，NDF，ADF，リグニンを定量し，その結果を Table 1 に100 g 当たりで示した。各種いも類中高系 14 号と紅赤の水分含量は 72.5% と 70.2% で，他のいも類より約 10% 少なかった。

高系 14 号と紅赤の TDF 量は 1.92±0.16% と 1.97±0.11% で最も高く，次いで里芋が 1.85±0.09% であった。男爵とケーキインの TDF 量は 1.27±0.09% と 1.41±0.11% で，ヤマノイモが 1.46±0.13% で高系 14 号，紅赤および里芋に比べ少なかった。科学技術庁資源調査会編の日本食品食物纖維成分表③によると甘藷 1.7%，馬鈴薯 1.1%，里芋 1.9%，ヤマノイモ 1.0% であり，甘藷，馬鈴薯，ヤマノイモは著者らの値よりもわずかに少なく，里芋はほぼ同じ値であった。

高系 14 号と紅赤の NDF 量は 1.01±0.06% と 1.10±0.06% で，NDF/TDF はそれぞれ 0.53 と 0.56 であった。それに比べ男爵とケーキインの NDF 量は，0.66±0.04% と 0.85±0.09% で，高系 14 号と紅赤より少ない値であったが，NDF/TDF はそれぞれ 0.52 と 0.60 で，高系 14 号や紅赤とはほぼ同じ値であった。しかし，里芋とヤマノイモの NDF 量は 0.83±0.01% と 0.66±0.24% で，NDF/TDF はいずれも 0.45 で他の 4 品種に比べ低かった。これは甘藷や馬鈴薯のほうが里芋やヤマノイモに比べ NDF 含量の多いものであることを示している。

各種いも類の ADF 量は 0.52～0.88% で，ヤマノイモがわずかに低いか大きな差はなかった。またリグニンは各種いも類とも含有量に差がなく，0.10～0.21% の範囲内であった。

(2) 加熱後の各種いも類中の DF 量の変化
各種いも類の DF 量（TDF，NDF，ADF およびリグニン）を乾物当たりに換算し，生いもの DF 量に対して加熱調理後の DF 量の変動を Table 2 に示した。

Table 1. Dietary fiber contents of raw potatoes

<table>
<thead>
<tr>
<th>Potatoes</th>
<th>Moisture (%)</th>
<th>TDF</th>
<th>NDF</th>
<th>ADF</th>
<th>Lignin</th>
<th>NDF/TDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokei-14</td>
<td>72.5</td>
<td>1.92±0.16</td>
<td>1.01±0.06</td>
<td>0.74±0.03</td>
<td>0.18±0.05</td>
<td>0.53</td>
</tr>
<tr>
<td>Beniaka</td>
<td>70.2</td>
<td>1.97±0.11</td>
<td>1.10±0.06</td>
<td>0.88±0.05</td>
<td>0.21±0.02</td>
<td>0.56</td>
</tr>
<tr>
<td>Irish cobbler</td>
<td>79.1</td>
<td>1.27±0.09</td>
<td>0.66±0.04</td>
<td>0.64±0.06</td>
<td>0.10±0.02</td>
<td>0.52</td>
</tr>
<tr>
<td>May queen</td>
<td>81.9</td>
<td>1.41±0.11</td>
<td>0.85±0.09</td>
<td>0.72±0.05</td>
<td>0.12±0.04</td>
<td>0.60</td>
</tr>
<tr>
<td>Dodare</td>
<td>80.5</td>
<td>1.85±0.09</td>
<td>0.83±0.01</td>
<td>0.82±0.05</td>
<td>0.18±0.03</td>
<td>0.45</td>
</tr>
<tr>
<td>Nagaimo</td>
<td>80.1</td>
<td>1.46±0.13</td>
<td>0.66±0.24</td>
<td>0.52±0.01</td>
<td>0.12±0.02</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Sweet potatoes (Kokei-14, Beniaka), potatoes (Irish cobbler, May queen), taro (Dodare), yam (Nagaimo). TDF: total dietary fiber, NDF: neutral detergent fiber, ADF: acid detergent fiber. * Each figure is mean±SD for six samples.
Table 2. Effect of cooking on dietary fiber contents in potatoes (% on dry matter basis)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Dry matter</th>
<th>TDF</th>
<th>NDF</th>
<th>ADF</th>
<th>Lignin</th>
<th>Rate of increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TDF (%)</td>
<td>NDF (%)</td>
<td></td>
<td></td>
<td>TDF (%)</td>
</tr>
<tr>
<td>Kokei-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>27.5</td>
<td>6.99±0.59</td>
<td>3.69±0.23</td>
<td>2.69±0.10</td>
<td>0.65±0.20</td>
<td>34.5</td>
</tr>
<tr>
<td>Steam</td>
<td>31.2</td>
<td>9.40±0.81<sup>a</sup></td>
<td>6.42±0.35<sup>a</sup></td>
<td>4.61±0.23</td>
<td>0.54±0.06</td>
<td>74.0</td>
</tr>
<tr>
<td>Boil</td>
<td>27.1</td>
<td>9.80±0.92<sup>a</sup></td>
<td>6.79±0.41<sup>a</sup></td>
<td>5.14±0.42</td>
<td>0.45±0.02</td>
<td>84.0</td>
</tr>
<tr>
<td>Oven roast</td>
<td>36.7</td>
<td>8.39±0.19<sup>b</sup></td>
<td>5.23±0.42<sup>b</sup></td>
<td>20.0</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td>Electronic range roast</td>
<td>43.0</td>
<td>8.14±0.59<sup>b</sup></td>
<td>5.03±0.30<sup>b</sup></td>
<td>16.5</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td>Fry</td>
<td>55.1</td>
<td>7.21±0.23</td>
<td>3.71±0.22</td>
<td>3.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Beniaka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>29.8</td>
<td>6.61±0.37</td>
<td>3.69±0.19</td>
<td>2.96±0.16</td>
<td>0.69±0.06</td>
<td>34.8</td>
</tr>
<tr>
<td>Steam</td>
<td>32.1</td>
<td>8.91±0.53<sup>a</sup></td>
<td>6.04±0.42<sup>a</sup></td>
<td>4.49±0.10</td>
<td>0.59±0.14</td>
<td>63.7</td>
</tr>
<tr>
<td>Boil</td>
<td>28.7</td>
<td>9.31±0.50<sup>a</sup></td>
<td>6.28±0.65<sup>a</sup></td>
<td>4.82±0.52</td>
<td>0.55±0.02</td>
<td>70.2</td>
</tr>
<tr>
<td>Oven roast</td>
<td>36.3</td>
<td>8.57±0.35<sup>a</sup></td>
<td>5.91±0.49<sup>a</sup></td>
<td>29.7</td>
<td>60.2</td>
<td></td>
</tr>
<tr>
<td>Electronic range roast</td>
<td>45.4</td>
<td>7.30±0.41<sup>a</sup></td>
<td>4.96±0.37<sup>a</sup></td>
<td>10.4</td>
<td>34.4</td>
<td></td>
</tr>
<tr>
<td>Fry</td>
<td>52.5</td>
<td>6.14±0.18<sup>a</sup></td>
<td>3.79±0.31</td>
<td>7.1</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Irish cobbler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>20.9</td>
<td>6.05±0.43</td>
<td>3.17±0.21</td>
<td>3.05±0.31</td>
<td>0.48±0.12</td>
<td>30.4</td>
</tr>
<tr>
<td>Steam</td>
<td>22.1</td>
<td>7.89±0.60<sup>a</sup></td>
<td>4.40±0.39<sup>a</sup></td>
<td>3.64±0.22</td>
<td>0.67±0.11</td>
<td>22.4</td>
</tr>
<tr>
<td>Boil</td>
<td>21.5</td>
<td>7.61±0.50<sup>a</sup></td>
<td>3.88±0.16<sup>a</sup></td>
<td>3.42±0.25</td>
<td>0.63±0.16</td>
<td>25.8</td>
</tr>
<tr>
<td>Oven roast</td>
<td>23.8</td>
<td>6.39±0.57</td>
<td>3.54±0.52</td>
<td>5.6</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>Electronic range roast</td>
<td>25.5</td>
<td>6.16±0.53</td>
<td>4.22±0.44<sup>a</sup></td>
<td>1.8</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Fry</td>
<td>47.4</td>
<td>5.25±0.27<sup>a</sup></td>
<td>2.69±0.10<sup>a</sup></td>
<td>13.2</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>May queen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>18.1</td>
<td>7.79±0.59</td>
<td>4.68±0.43</td>
<td>3.98±0.35</td>
<td>0.69±0.22</td>
<td>13.9</td>
</tr>
<tr>
<td>Steam</td>
<td>17.7</td>
<td>8.87±0.91<sup>a</sup></td>
<td>5.44±0.79<sup>a</sup></td>
<td>4.51±0.29</td>
<td>0.47±0.19</td>
<td>16.2</td>
</tr>
<tr>
<td>Boil</td>
<td>18.7</td>
<td>8.68±0.29<sup>a</sup></td>
<td>5.36±0.30</td>
<td>4.32±0.34</td>
<td>0.61±0.18</td>
<td>14.5</td>
</tr>
<tr>
<td>Oven roast</td>
<td>24.1</td>
<td>7.84±0.29</td>
<td>4.12±0.12</td>
<td>0.6</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Electronic range roast</td>
<td>23.0</td>
<td>6.07±0.41<sup>a</sup></td>
<td>4.45±0.25</td>
<td>9.5</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>Fry</td>
<td>36.0</td>
<td>7.08±0.34<sup>a</sup></td>
<td>4.72±0.08<sup>a</sup></td>
<td>9.1</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>Dodare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>19.5</td>
<td>9.47±0.45</td>
<td>4.26±0.06</td>
<td>4.19±0.21</td>
<td>0.93±0.13</td>
<td>26.9</td>
</tr>
<tr>
<td>Steam</td>
<td>19.7</td>
<td>12.02±0.44<sup>a</sup></td>
<td>4.52±0.15<sup>a</sup></td>
<td>4.37±0.41</td>
<td>0.68±0.14</td>
<td>6.1</td>
</tr>
<tr>
<td>Boil</td>
<td>19.8</td>
<td>12.26±0.46<sup>a</sup></td>
<td>4.48±0.17</td>
<td>4.22±0.25</td>
<td>0.73±0.13</td>
<td>14.5</td>
</tr>
<tr>
<td>Oven roast</td>
<td>24.2</td>
<td>7.92±0.39<sup>a</sup></td>
<td>4.13±0.07<sup>a</sup></td>
<td>16.4</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Electronic range roast</td>
<td>22.6</td>
<td>8.84±0.41<sup>a</sup></td>
<td>4.71±0.20<sup>a</sup></td>
<td>6.7</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Fry</td>
<td>34.2</td>
<td>10.37±0.34<sup>a</sup></td>
<td>5.09±0.21<sup>a</sup></td>
<td>9.5</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>Nagaimo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>19.9</td>
<td>7.36±0.66</td>
<td>3.30±0.12</td>
<td>2.62±0.07</td>
<td>0.59±0.11</td>
<td>12.0</td>
</tr>
<tr>
<td>Steam</td>
<td>17.3</td>
<td>8.24±0.52<sup>a</sup></td>
<td>5.59±0.24<sup>a</sup></td>
<td>4.15±0.15</td>
<td>0.71±0.18</td>
<td>69.4</td>
</tr>
<tr>
<td>Boil</td>
<td>20.4</td>
<td>8.00±0.46<sup>a</sup></td>
<td>5.64±0.28<sup>a</sup></td>
<td>3.96±0.23</td>
<td>0.50±0.06</td>
<td>70.9</td>
</tr>
<tr>
<td>Oven roast</td>
<td>20.9</td>
<td>8.18±0.63<sup>a</sup></td>
<td>5.47±0.35<sup>a</sup></td>
<td>11.1</td>
<td>65.8</td>
<td></td>
</tr>
<tr>
<td>Electronic range roast</td>
<td>23.7</td>
<td>7.27±0.65</td>
<td>4.98±0.36<sup>a</sup></td>
<td>1.2</td>
<td>50.9</td>
<td></td>
</tr>
<tr>
<td>Fry</td>
<td>30.1</td>
<td>5.76±0.28<sup>a</sup></td>
<td>3.30±0.06</td>
<td>-21.7</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Sweet potatoes (Kokei-14, Beniaka), potatoes (Irish cobbler, May queen), taro (Dodare), yam (Nagaimo).
TDF: total dietary fiber, NDF: neutral detergent fiber, ADF: acid detergent fiber. * Each figure is mean±SD for six samples. ^a Statistically significant (p<0.01) by t-test (as compared with raw potatoes). ^b Statistically significant (p<0.05) by t-test (as compared with raw potatoes). Rate of increase (%) = ([TDF (NDF) of cooked potatoes - TDF (NDF) of raw potatoes] / TDF (NDF) of raw potatoes) x 100.

(1031)
1) TDF量の変化
蒸すおよび茹でる場合の各種もも類は生いもに比較してTDF量の増加が認められた。特に高系14号の
生が6.99%で、蒸す場合9.40%（以下生いもに対する
増加率が34.5%）、茹でる場合9.89%（40.2%）と
増加した。同様に赤赤の生が6.61%で、蒸す場合
8.91%（34.8%）、茹でる場合9.31%（40.8%）であっ
た。次に里芋の生が9.47%であるが、蒸す場合12.2
%（26.9%）、茹でる場合12.26%（29.5%）に増加し
た。男爵およびメークインの生は、それぞれ6.05%、
7.79%で、蒸す場合7.89%（30.4%）、8.87%（13.9%
）、茹でる場合7.61%（25.8%）、8.68%（11.4%）
と増加が認められた。またヤマノイモの生では7.36
%で、蒸す場合8.24%（12.0%）、茹でる場合8.00%
（8.7%）と増加があった。このように甘露と里芋は馬
鈴薯やヤマノイモに比較し著しく増加した。

次に焼く場合では、高系14号8.39%（20.0%）
赤赤8.57%（29.7%）およびヤマノイモ8.18%（11.1%）
と増加したが、男爵6.39%およびメークイン
7.84%は、生と含量に有意差がなく、里芋は減少した。
蒸すおよび茹でる場合に比べ、焼く場合は各種もも類
ともTDF量の増加率は低くなっていた。

電子レンジ加熱の場合、高系14号8.14%（16.5%）
と赤赤7.30%（10.4%）が増加していただけで、他
のいも類は生と同じ含量か、かえって減少した。

揚げる場合は、里芋のみが10.3%（9.5%）で有意
に増加していた。高系14号はわずかに増加していた
か有意差がなく、他のいも類はすべて減少した。

2) NDF、ADFおよびリグニン量の変化

高系14号および赤赤のNDF量は生ではいずれも
3.69%であり、ADF量はそれぞれ2.69%、2.96%で
あった。しかし蒸すおよび茹でる場合にはNDF量が
6.04～6.79%、ADF量が4.61～5.14%にいずれも有
意に増加した。これはFig.1に示すようにIDFのセ
ルロース区およびヘミセルロース区の増加であり、リ
グニンおよびP-SDFの増加は認められなかった。ま
た男爵とメークイン、ヤマノイモのNDF量は甘露ほ
ど増加していないが、いずれも有意な増加が認められ
た。里芋は増加が認められなかった。しかし里芋の蒸
すおよび茹でる場合にFig.1に示すようにP-SDFが
他のいも類よりも著しく増加した。

焼き場合は、高系14号、赤赤およびヤマノイモの
NDF量は有意な増加が認められたが、男爵、メーク
インおよび里芋には認められなかった。

電子レンジ加熱では、メークインのNDF量以外は
有意な増加が認められた。しかし油で揚げた場合は里

Fig. 1. Effect of cooking on the composition of dietary fiber in potatoes
a: statistically significant (p<0.01) by t-test (as compared with raw potatoes).
「いも類の食物繊維量の加熱調理による変化

芋5.09％で有意に増加していたが、他のいも類は生いもとはほとんど差が少なかった。

リグニンは蒸す、茹でる、焼く、電子レンジ加熱および揚げるで、各種いも類とも増加が認められなかった。

4. 考察

吉田らは野菜のNDFが茹でるあるいは煮ることにより、ほとんど野菜で減少し、その変化は主にミセルロースの減少であり、炒めるあるいは揚げるでNDF、ADFとも、ほとんどのものが増加しており、大部分はセルロースの変化であると述べている。また高橋らは15種類の野菜について、生および通常加熱と過剰加熱調理後のDF含量を不溶性DFと可溶性DFに分けて測定したところ、15種類の野菜のうち、なすとさやえんどうが増加し他の野菜については減少か、変化が認められなかったと述べている。なすの増加は不明であるが、さやえんどうはでんぶんを含むため、温風下で温風でんぶんが生成され、結果として増加したと述べている。

Englystら810)はDF定量法の検討中に、食パンと加熱調理した馬鈴薯などの加工食品が、生の原料に対してNSP(nonstarch polysaccharides)が増加していることを報告している。この酵素分解に抵抗する物質は2N KOH、20℃、30分の処理あるいはDMSO(dimethyl sulfoxide)処理で溶解し、酵素（耐熱性α-アミラーゼ）分解を受けるようになりグルコースを生成する8111)。この区分をresistant starch(以下RS)と呼んだが、このRSは小腸を通じて大腸で微生物により分解され短鎖脂肪酸となり人体に利用されるとEnglystら8)は報告している。しかしEnglystら8)はRSが酵素・重量法によるDF定量では、酵素により一部は分解するとして、また種々の加工法により生成される割合が異なるなど定量値に大きな影響を及ぼすとの分析上の考えから、DF成分から除外すべきであると主張している。一方Aspら12)はRSがDF定量法および加工により生成される割合が異なるなどの理由から、さらにRSが小腸を通じて大腸で分解されると認められている以上、RSをDF成分に含めてべきであると主張している。

著者の結果では各種いも類を蒸すおよび茹でる場合、生に比較してTDF量がいずれも増加した。またNDF量は里芋以外有意に増加していた。特に甘藷のTDF量の増加は約35～40%と高く無視できる数値でなかった。これに対してFig.1に示した構成DFの割合が、生いもに比較してセルロースとヘミセルロース区で増加が認められたことから、でんぶんの一部が不溶性DFのセルロースとヘミセルロースの不溶化成分に変換された。す、この増加した部分がRSであるかどうか直接的証明はしていないが、一種のRSの生成に基づくものと考えられる。また、焼き、電子レンジ加熱および揚げるでは、蒸すおよび茹でる場合と異なりRSが生成されなかったため増加がなかったものと推察されるが、その原因は不明である。しかし、その種類により多い増加したものの増加しないものがあるのは、でんぶんの性質の差によるものではないかと考えられる。

同じ調理法でP-SDF区は甘藷と馬鈴薯では増加が認められないが、里芋は増加し、ヤマノイモでは減少し、各種いも類により、其の変化に差があった。このP-SDFの増減の差については今後の検討課題である。

揚げる場合、里芋以外の他のいも類ではTDF量が減少していた。この減少理由については不明であるが、NDF量が生とほぼ同じであることから、P-SDF区が高温で揚げることがした損失のものと考えられた。

5. 要約

4種類6品種の生のいも類を用いて、TDF、NDF、ADF,リグニンを定量した結果、次のようであった。

生の乾物当たりTDF量は甘藷が6.61～6.99%,
馬鈴薯が6.05～7.79%, 里芋が9.47%, ヤマノイモが7.36%であった。蒸すおよび茹でる場合、甘藷が8.91～9.80%, 馬鈴薯が7.61～8.87%, 里芋が12.02～12.26%、ヤマノイモが8.00～8.24%と、いずれも増加した。その増加率は生に対して8.7～40.8%であった。特に甘藷、馬鈴薯、ヤマノイモはTDF量の増加が認められたことから、里芋はP-SDFの増加があった。焼き、電子レンジ加熱では甘藷のTDFの増加が認められているが、他のいも類はほぼ同じ値、かえって減少していた。また揚げる場合は里芋のTDF量がわずかに増加しているが、他のいも類は減少した。

引用文献
1) 吉田 真, 齋藤洋子: 家政誌, 36, 721～725 (1985)
2) 高橋リエ, 小川晴子, 佐藤英子, 森 文平: 栄養誌, 47, 189～197 (1989)
4) 津久井亜紀夫：家政誌, 39, 89－97 (1988)
5) 津久井亜紀夫, 鈴木敦子, 永山スミ, 小口悦子：家政誌, 44, 887－891 (1993)
7) 大西智子, 森 文平：栄食誌, 40, 426－428 (1987)
8) 森 文平：澱粉科学, 38, 379－387 (1991)
9) 科学技術庁資源調査会(編)：四訂日本食品標準成分表のフォローアップに関する調査報告Ⅳ－日本食品物質成分表－, 22 (1992)
11) 不破英次：澱粉科学, 38, 51－54 (1991)