自動化健診学会設施の
’80年度生化学サーベイ報告

清 瀬 闘 \(^{1} \) 水 野 映 二 \(^{2} \) 高 原 喜 之 郎 \(^{3} \)
春 日 誠 次 \(^{4} \) 菅 沼 源 \(^{5} \) 新 谷 和 夫 \(^{6} \)
水 岡 慶 二 \(^{7} \) 八 坂 敏 夫 \(^{8} \)

過去10年間の生化学コントロールサーベイ成績
は各施設における精度管理の向上と共に改善されてきており、現在、良好な状態が続いている。このことから、’80年度は精度管理の良否と正確度の
一面について、各回毎に、および1ヶ月間を通して観察することとした。この目的のために各施
設における試料の溶解誤差を皆無にする必要があることから、液状試料を採用することにした。現在、液状試料で安定なものとしては1ヶ月間が最
長期間であったので、これを用いた。

なお、液状試料の安定化剤としてエチレングリコールが添加されていることから、血清総タンパク
測定用試管計は測定不能であった。および、尿素
窒素定量法のウレアーゼインドフェノール法では
フェノール系物質としてサルチル酸を用いている
測定方法があるが、この物質を用いている反応系
に影響がみられたので配慮した。

以上の内容をもとに、1ヶ月間の成績をまとめ
たので報告する。

I. 実施条件

① 試料：Beckman 社 DECISION TM. Li-

Study of Chemistry Control ’80 Results in
JAHT Laboratories.
1 精度管理副委員長（三井記念病院）
2～8精度管理委員
2（三井記念病院）、3（神奈川県立衛生短大）
4（関東通信病院）、5（総医研究（株））
6（関東通信病院）、7（東大病院）、8（PL 病院）

表 1 ’80年、生化学サーベイ計画（試料名付）

<table>
<thead>
<tr>
<th>サーベイ回数</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>試 料</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level-1(^*1)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>6日目①</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level-2(^*2)</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>3日目①</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level-3(^*3)</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>3日目②</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

quid Comprehensive Chemistry Control Serum.
の Level-1（正常範囲～低値傾向）、Level-2（正
常範囲～上値傾向）、Level-3（正常範囲～高値
傾向）、各 20ml バイアル、-15℃～-20℃ 下
で液状にて1ヶ月以上安定、2℃～8℃ 保存で20
日間安定。酵素成分のアルカリピロファターゼ(ALK-P) は小牛由来、トランスアミナーゼ
(GOT, GPT) および乳酸脱水素酵素 (LDH) は
豚由来である。

② 配布方法：Level-1, Level-2, Level-3 の計
3本をアイスバック包装し、3日以内に全国各施
設へ配布した。

③ 実施計画：表1に示すように、1ヶ月間に
4回実施した。各回毎に3濃度を配り、到着後の
測定時期は各施設の測定日を基準に3日目と6日
目にも再測定した。各測定は重複測定を義務づ
け、精度を高めた成績を報告させた。
<table>
<thead>
<tr>
<th>コード</th>
<th>機種名</th>
<th>項目</th>
<th>TP</th>
<th>ALB</th>
<th>GLU</th>
<th>CHO</th>
<th>BUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>回数</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>LAC 06</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>02</td>
<td>LAC 02A</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>03</td>
<td>日立400</td>
<td></td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>04</td>
<td>日立500</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>05</td>
<td>日立716</td>
<td></td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>06</td>
<td>日本電子 N-6</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>07</td>
<td>日本電子 H-6</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>08</td>
<td>日本電子 12ch</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>09</td>
<td>オリンパス 601</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>オリンパス 201</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>テクニコン AAI</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>テクニコン SMA12/60</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>テクニコン SMA PLUS</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>テクニコン SMAC</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>HYCEL X</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>HYCEL 17</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>DUPONT ACA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>AGA オートケミスト</td>
<td></td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>LKB</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>ABA 100</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>グルコース・アナライザー</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>グルコース・メーター</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>グライナー</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>ロトクミシントリフィケメ等速心法</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>原子吸光</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>ビリルビンメーター</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>日立706D</td>
<td></td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>TBA 360</td>
<td></td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>29</td>
<td>SMA 10/60</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>コールマン Ca-51</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>ジェムサック</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>ギルフォード 3400</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>日本電子 MS18</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>クロノラジオントメーター</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>コスモラジオントメーター</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>カーテーケモラボ</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>ABA-VP</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>日立726</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>オリンパス 6000</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>コーニング Ca-アナライザ940</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>TBA 880</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>日立712</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>島津 CL-12</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>オズモラジオントメーター</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>日本電子 Si-6</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>日立705</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>用手法</td>
<td></td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>UA</td>
<td>T-Bil</td>
<td>IP</td>
<td>Ca</td>
<td>AL-P</td>
<td>GOT</td>
<td>GPT</td>
<td>LDH</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

日健診誌 JAMHTS Vol. 9 No. 1 1982年
日本自動化臨床診学会誌

④ 測定内容：TP，ALb，Glucose，cholesterol，BUN，U-A，Bilirubin，I-P，Ca，Al-P，GOT，GPT，LDH の13項目について，測定方法別に分類し，各々の評価をした。なお報告形式は専用コンピューターカードを用いる各種必要事項（施設名，項目名，検査担当者名，検査実施日月，バイアル溶解時刻，室温，分析時刻，反応温度，表現温度，使用単位，サーベイ回数，施設コード，項目コード，自動分析機コード，測定方法別コード，測定値，正常域，その他）が記入できるもので，各種情報を集めた。

以上の内容の中から，全体データと実行評価比率の解析を中心に報告する。

II. 評価方法

各項目別測定方法別および各試料ごとに次のSDI（Standard Deviation Index）を計算し，±1SDI を5，±2SDI を4，±3SDI を2，±3SDI 以上を0とした評価を与えた。この評価を各試料①～⑤について行い，各項目ごとに平均し，項目評価とした。さらに13項目（TP〜LDH）の項目評価を総和し，その13項目で平均して，100倍した値を総評価比率として，実行した項目数で平均して，100倍した値を実行評価比率とした。

各試料測定値一各試料平均値×100=SDI
1標準偏差
評価±1SDI=5，±2SDI=4，±3SDI=2，±3SDI以上0とする。
実行項目評価値×100=総評価比率
13項目
実行項目評価値×100=実行評価比率
実行項目数

III. 結果および考察

1. 参加施設数

第1回65施設，第2回67施設，第3回70施設，第4回70施設の参加がえられ，回ごとに2〜3施設増加してきており，一ケ年間で5施設増加した。過去の参加施設の増加は3〜5であることから，’81年度も同様の増加傾向であった。

2. 自動分析機種

表2に示すごく，’81年度では検査数は46および用手法である。多くの機種コードがあげられ

表3-1 ’80年度 測定方法別参加数

<table>
<thead>
<tr>
<th>項目コード</th>
<th>項目コード</th>
<th>SDI1</th>
<th>SDI2</th>
<th>SDI3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. TP, ALb</td>
<td>1. TP, ALb</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3. Glucose</td>
<td>2. Glucose</td>
<td>55</td>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td>4. Cholesterol</td>
<td>3. Cholesterol</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5. BUN</td>
<td>4. BUN</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6. U-A</td>
<td>5. U-A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7. Bilirubin</td>
<td>6. Bilirubin</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8. I-P</td>
<td>7. I-P</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

64

日 健 診 診 JAMHTS Vol. 9 No. 1 1982年
<table>
<thead>
<tr>
<th>項目コード</th>
<th>制定方法コード</th>
<th>参加数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00Ca</td>
<td>1. OCPC</td>
<td>46 46 47 41</td>
</tr>
<tr>
<td>0.00-2</td>
<td>2. Flame Method</td>
<td>3 3 4 3</td>
</tr>
<tr>
<td>0.00-3</td>
<td>5. Other</td>
<td>0 1 1</td>
</tr>
<tr>
<td>1.00-4</td>
<td>1. K-K(KA-Unit)</td>
<td>46 46 43 52</td>
</tr>
<tr>
<td>0.00-5</td>
<td>2. Bessy Lowry</td>
<td>4 5 6 5</td>
</tr>
<tr>
<td>0.00-6</td>
<td>3. Hyce</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>0.00-7</td>
<td>4. Technicon Unit(SMA SMAC)</td>
<td>10 9 8 9</td>
</tr>
<tr>
<td>0.00-8</td>
<td>5. Dupont</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>0.00-9</td>
<td>5. Other</td>
<td>4 6 2 3</td>
</tr>
<tr>
<td>1.00-10</td>
<td>1. R-R(Karmen-Unit)</td>
<td>22 17 18 16</td>
</tr>
<tr>
<td>0.00-11</td>
<td>2. Hyce Unit</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>0.00-12</td>
<td>3. UV-End</td>
<td>9 9 9 8</td>
</tr>
<tr>
<td>0.00-13</td>
<td>4. UV-Rate</td>
<td>22 27 22 22</td>
</tr>
<tr>
<td>0.00-14</td>
<td>5. Technicon Unit(SMA SMAC)</td>
<td>10 10 8 10</td>
</tr>
<tr>
<td>0.00-15</td>
<td>6. Dupont</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>0.00-16</td>
<td>9. Other</td>
<td>0 2 3 4</td>
</tr>
</tbody>
</table>

3. 測定方法の参加数

表3 (1, 2) に項目コード、制定方法コードおよびサーベイ回数毎の参加状況を示した。測定方法は長い期間に移り変わってきている。例えばとんど使用されていないものはTP-1（今回のみ）Alb-2, 3, 4, 9, GLu-1, 3, 4, Cho-2, 3, UA-9, Bil-4, IP-9, Ca-9, AL-P-3, 5, GOT-2, 6, GPT-2, 6, LDH-5, 6, 9,などがある。3～9施設程度の使用にとどまっているものはAlb-5, GLu-9, Cho-1, BUN-3, Bil-1, Ca-2, AL-P-2, 4, 9, GOT-3, 5, 9, GPT-3, 5, 9, LDH-1, 4, 7,などがある。10～65施設の使用があるものはTP-2, Alb-1, GLu-2, Cho-4, BUN-1, 2, UA-1, 2, Bil-2, 3, IP-1, 2, Ca-1, AL-P-1, GOT-1, 4, GPT-1, 4, LDH-2, 3,などがあり、これらの測定方法はN数が多いことから統計的にも信頼度が高い。各施設の事情にも関係はあるが、ある程度共通の測定方法が集まればサーベイ評価も参加施設全体に行うことができるものと思われる。
<table>
<thead>
<tr>
<th>分析項目</th>
<th>分析方法</th>
<th>試料名</th>
<th>n'(N)</th>
<th>(\bar{X})</th>
<th>(\pm SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 T.P.</td>
<td>1. Refracto</td>
<td>A</td>
<td>2(2)</td>
<td>4.65</td>
<td>0.07</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>5.59</td>
<td>0.21</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>7.35</td>
<td>0.35</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2. Biuret</td>
<td>A</td>
<td>53(55)</td>
<td>4.53</td>
<td>0.1756(57)</td>
<td>4.55</td>
<td>0.2159(60)</td>
<td>4.50</td>
<td>0.51</td>
<td>54(60)</td>
<td>4.50</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>52(55)</td>
<td>5.90</td>
<td>0.2452(57)</td>
<td>5.92</td>
<td>0.1856(60)</td>
<td>5.89</td>
<td>0.1856(60)</td>
<td>5.88</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>52(55)</td>
<td>7.40</td>
<td>2.3255(57)</td>
<td>7.46</td>
<td>0.2658(60)</td>
<td>7.43</td>
<td>0.2555(60)</td>
<td>7.43</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002 Alb</td>
<td>1. BCG</td>
<td>A</td>
<td>50(53)</td>
<td>2.92</td>
<td>0.1153(56)</td>
<td>2.89</td>
<td>0.1055(58)</td>
<td>2.88</td>
<td>0.1056(60)</td>
<td>2.87</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>51(53)</td>
<td>3.81</td>
<td>0.5155(56)</td>
<td>3.79</td>
<td>0.1454(58)</td>
<td>3.79</td>
<td>0.1155(60)</td>
<td>3.78</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>52(53)</td>
<td>4.73</td>
<td>0.2255(56)</td>
<td>4.71</td>
<td>0.1954(58)</td>
<td>4.71</td>
<td>0.1458(60)</td>
<td>4.73</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. HABCA</td>
<td>A</td>
<td>1(1)</td>
<td>3.00</td>
<td>"</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>1(1)3.00</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>3.90</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>"</td>
<td>4.10</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>4.80</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>"</td>
<td>5.00</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3. Electro</td>
<td>A</td>
<td>2(2)</td>
<td>3.20</td>
<td>0.28</td>
<td>1(1)</td>
<td>3.20</td>
<td>0</td>
<td>2(2)</td>
<td>3.00</td>
<td>0.14</td>
<td>1(1)</td>
<td>3.10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>phoresis</td>
<td>B</td>
<td>"</td>
<td>4.15</td>
<td>0.35</td>
<td>"</td>
<td>4.20</td>
<td>0</td>
<td>"</td>
<td>3.90</td>
<td>0.28</td>
<td>"</td>
<td>4.20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>5.15</td>
<td>0.49</td>
<td>"</td>
<td>5.50</td>
<td>0</td>
<td>"</td>
<td>4.95</td>
<td>0.35</td>
<td>"</td>
<td>5.30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4. Hycel</td>
<td>A</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>—</td>
<td>—</td>
<td>"</td>
<td>—</td>
<td>—</td>
<td>"</td>
<td>—</td>
<td>—</td>
<td>"</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>—</td>
<td>—</td>
<td>"</td>
<td>—</td>
<td>—</td>
<td>"</td>
<td>—</td>
<td>—</td>
<td>"</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5. BCP</td>
<td>A</td>
<td>3(3)</td>
<td>2.93</td>
<td>0.25</td>
<td>4(4)</td>
<td>2.92</td>
<td>0.13</td>
<td>4(4)</td>
<td>2.82</td>
<td>0.15</td>
<td>4(4)</td>
<td>2.87</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>3.90</td>
<td>0.30</td>
<td>"</td>
<td>3.82</td>
<td>0.15</td>
<td>"</td>
<td>3.77</td>
<td>0.13</td>
<td>"</td>
<td>3.75</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>4.97</td>
<td>0.38</td>
<td>"</td>
<td>4.82</td>
<td>0.17</td>
<td>"</td>
<td>4.77</td>
<td>0.13</td>
<td>"</td>
<td>4.77</td>
<td>0.19</td>
</tr>
<tr>
<td>003 GLC</td>
<td>1. OTB</td>
<td>A</td>
<td>2(2)</td>
<td>30.0</td>
<td>1.41</td>
<td>2(2)</td>
<td>28.00</td>
<td>4.24</td>
<td>2(2)</td>
<td>28.65</td>
<td>5.16</td>
<td>1(1)</td>
<td>25.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>103.0</td>
<td>1.41</td>
<td>"</td>
<td>95.00</td>
<td>4.95</td>
<td>"</td>
<td>96.25</td>
<td>2.47</td>
<td>"</td>
<td>95.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>234.5</td>
<td>6.36</td>
<td>"</td>
<td>236.00</td>
<td>13.44</td>
<td>"</td>
<td>245.00</td>
<td>12.73</td>
<td>"</td>
<td>243.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>試料名</td>
<td>3日目</td>
<td>6日目</td>
<td>(3日~6日)全平均</td>
<td>3日/6日</td>
<td>表示値</td>
<td>有差検</td>
<td>X ±SD</td>
<td>許容限界</td>
<td>方法</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(1) Principal ASSIGNED VALLUE-PAVS</td>
<td>D (Ⅲ) 0</td>
<td>6</td>
<td>D (Ⅱ) 0</td>
<td>2(2) 4</td>
<td>N.S. 4.643~4.9 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.95 0.21 D 3(2)</td>
<td>6.00 0.28</td>
<td>E (Ⅱ) 0</td>
<td>1(1) 6.00 0</td>
<td>N.S. 5.955~6.3 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.35 0.35 E 2(2)</td>
<td>7.40 0.42</td>
<td>E (Ⅱ) 0</td>
<td>7.40 0.06</td>
<td>N.S. 7.470~7.8 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(4) Du Pont aca *</td>
<td>D (Ⅲ) 4.51</td>
<td>13</td>
<td>D (Ⅱ) 4.53</td>
<td>2(2) 4.52</td>
<td>N.S. 4.643~4.9 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.79 0.01 D 52(53)</td>
<td>3.81 0.15</td>
<td>E (Ⅱ) 3.78</td>
<td>3.80 0.02</td>
<td>N.S. 3.934~4.4 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.72 0.01 E 52(53)</td>
<td>4.74 0.13</td>
<td>E (Ⅱ) 4.73</td>
<td>4.84 0.01</td>
<td>N.S. 4.842~5.4 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(2) Principal ASSIGNED VALLUE-PAVS</td>
<td>D (Ⅲ) 4.60</td>
<td>0</td>
<td>D (Ⅱ) 1(1) 4.60 0</td>
<td>N.S. 2.925~3.3 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00 0.14 D (Ⅰ) 3.80</td>
<td>0</td>
<td>E (Ⅱ) 3.80</td>
<td>3.80 0</td>
<td>N.S. 3.934~4.4 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.90 0.14 E (Ⅰ) 4.80</td>
<td>0</td>
<td>E (Ⅱ) 4.80</td>
<td>4.80 0</td>
<td>N.S. 4.842~5.4 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(4) Du Pont aca *</td>
<td>D (Ⅲ) 3.05</td>
<td>0.07</td>
<td>D (Ⅱ) 1(1) 3.20</td>
<td>0</td>
<td>N.S. 2.925~3.3 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.11 0.23 D (Ⅰ) 4.15</td>
<td>0.35</td>
<td>E (Ⅱ) 4.0</td>
<td>4.08 0.11</td>
<td>N.S. 4.842~5.4 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.23 0.23 E (Ⅰ) 5.25</td>
<td>0.49</td>
<td>E (Ⅱ) 5.30</td>
<td>5.28 0.04</td>
<td>N.S. 4.842~5.4 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(4) 2.89 0.05 D (Ⅲ) 2.82</td>
<td>0.15</td>
<td>D (Ⅱ) 2.90</td>
<td>0.12</td>
<td>N.S. 2.925~3.3 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.81 0.07 D (Ⅰ) 3.87</td>
<td>0.25</td>
<td>E (Ⅱ) 3.75</td>
<td>0.17</td>
<td>N.S. 2.925~3.3 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.83 0.09 E (Ⅰ) 4.97</td>
<td>0.38</td>
<td>E (Ⅱ) 4.85</td>
<td>0.17</td>
<td>N.S. 4.910~0.08 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(4) 27.91 2.11 D (Ⅲ) 29.40</td>
<td>1.98</td>
<td>D (Ⅱ) 30.50</td>
<td>3.54</td>
<td>N.S. 29.95~0.78 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.44 3.74 D (Ⅰ) 103.5</td>
<td>2.12</td>
<td>E (Ⅱ) 100.0</td>
<td>0</td>
<td>N.S. 101.75~2.47 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239.75 5.04 E (Ⅰ) 211.0</td>
<td>29.7</td>
<td>E (Ⅱ) 225.00</td>
<td>12.73</td>
<td>N.S. 225.00~19.80 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

方法：表示値に用いた機器
1: Principal ASSIGNED VALLUE-PAVS
2: Discrete Automatic Analyzers

* Du Pont aca のみ
(1)〜(N) サーベイ回を示す

JAMHTS Vol. 9 No. 1 1982年 67
<table>
<thead>
<tr>
<th>分析項目</th>
<th>分析方法 (コード)</th>
<th>試料名</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n'(N)</td>
<td>X</td>
<td>±SD</td>
<td>n'(N)</td>
<td>X</td>
</tr>
<tr>
<td>2. Enzyme</td>
<td>A</td>
<td>57(59)</td>
<td>33.17</td>
<td>3.08</td>
<td>57(60)</td>
<td>33.18</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>56(59)</td>
<td>105.01</td>
<td>5.11</td>
<td>58(60)</td>
<td>105.25</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>57(59)</td>
<td>247.15</td>
<td>11.04</td>
<td>57(60)</td>
<td>248.22</td>
</tr>
<tr>
<td>3 Neocuprine</td>
<td>A</td>
<td>2(2)</td>
<td>42.0</td>
<td>12.73</td>
<td>1(1)</td>
<td>36.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td>123.0</td>
<td>31.11</td>
<td></td>
<td>105.00</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td>294.5</td>
<td>75.66</td>
<td></td>
<td>249.00</td>
</tr>
<tr>
<td>4. Dupont</td>
<td>A</td>
<td>1(1)</td>
<td>38.00</td>
<td>0</td>
<td>1(1)</td>
<td>30.00</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td>114.0</td>
<td>0</td>
<td></td>
<td>108.00</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td>270.0</td>
<td>0</td>
<td></td>
<td>266.00</td>
</tr>
<tr>
<td>004 Cho.</td>
<td>1. L-B</td>
<td>A</td>
<td>9(9)</td>
<td>120.2</td>
<td>16.37</td>
<td>6(6)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>8(9)</td>
<td>168.06</td>
<td>19.31</td>
<td></td>
<td>167.37</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>8(9)</td>
<td>226.0</td>
<td>16.23</td>
<td></td>
<td>216.20</td>
</tr>
<tr>
<td>2. OPA</td>
<td>A</td>
<td>0</td>
<td></td>
<td>2</td>
<td>129.50</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td>169.50</td>
<td>3.54</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td>213.00</td>
<td>1.41</td>
</tr>
<tr>
<td>3. Kiliani</td>
<td>A</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4. Enzyme</td>
<td>A</td>
<td>52(56)</td>
<td>123.02</td>
<td>5.96</td>
<td>57(58)</td>
<td>123.67</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>52(56)</td>
<td>165.11</td>
<td>6.84</td>
<td>55(58)</td>
<td>165.36</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>52(56)</td>
<td>207.42</td>
<td>8.76</td>
<td>55(58)</td>
<td>210.11</td>
</tr>
<tr>
<td>005 BUN</td>
<td>1. Diacetyl</td>
<td>A</td>
<td>10(10)</td>
<td>10.11</td>
<td>0.60</td>
<td>10(11)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>9(10)</td>
<td>26.89</td>
<td>0.79</td>
<td></td>
<td>26.70</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9(10)</td>
<td>51.61</td>
<td>1.23</td>
<td></td>
<td>51.09</td>
</tr>
<tr>
<td>2. Urea</td>
<td>A</td>
<td>43(48)</td>
<td>10.53</td>
<td>0.84</td>
<td>45(49)</td>
<td>10.52</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td>26.46</td>
<td>1.42</td>
<td></td>
<td>26.60</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>45(48)</td>
<td>46.25</td>
<td>5.44</td>
<td>47(49)</td>
<td>45.98</td>
</tr>
<tr>
<td>(1 ～ 4) 全平均</td>
<td>試料</td>
<td>3日目</td>
<td>6日目</td>
<td>(3日～6日)全平均</td>
<td>3日/6日</td>
<td>表示値</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>n(N)</td>
<td>X</td>
<td>±SD</td>
<td>n(N)</td>
<td>X</td>
<td>±SD</td>
<td>n(N)</td>
</tr>
<tr>
<td>4(4)</td>
<td>32.61</td>
<td>0.66</td>
<td>D</td>
<td>62(63)</td>
<td>31.02</td>
<td>2.33</td>
</tr>
<tr>
<td>n</td>
<td>105.03</td>
<td>0.16</td>
<td>D</td>
<td>56(59)</td>
<td>105.01</td>
<td>5.39</td>
</tr>
<tr>
<td>n</td>
<td>248.83</td>
<td>1.46</td>
<td>E</td>
<td>n</td>
<td>247.03</td>
<td>10.44</td>
</tr>
<tr>
<td>4(4)</td>
<td>36.00</td>
<td>4.24</td>
<td>D</td>
<td>1(1)</td>
<td>31.0</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>108.25</td>
<td>9.98</td>
<td>D</td>
<td>2(2)</td>
<td>122.5</td>
<td>31.82</td>
</tr>
<tr>
<td>n</td>
<td>258.82</td>
<td>23.92</td>
<td>E</td>
<td>n</td>
<td>294.0</td>
<td>76.37</td>
</tr>
<tr>
<td>3(3)</td>
<td>32.67</td>
<td>4.62</td>
<td>D</td>
<td>0(1)</td>
<td>(III)</td>
<td>31.0</td>
</tr>
<tr>
<td>n</td>
<td>108.50</td>
<td>5.27</td>
<td>D</td>
<td>1(1)</td>
<td>114.0</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>262.00</td>
<td>10.58</td>
<td>E</td>
<td>n</td>
<td>272.0</td>
<td>0</td>
</tr>
<tr>
<td>4(4)</td>
<td>122.25</td>
<td>3.30</td>
<td>D</td>
<td>5(5)</td>
<td>127.0</td>
<td>8.46</td>
</tr>
<tr>
<td>n</td>
<td>168.45</td>
<td>0.96</td>
<td>D</td>
<td>9(9)</td>
<td>160.38</td>
<td>27.91</td>
</tr>
<tr>
<td>n</td>
<td>221.44</td>
<td>4.05</td>
<td>E</td>
<td>8(9)</td>
<td>229.25</td>
<td>15.90</td>
</tr>
<tr>
<td>1(1)</td>
<td>129.50</td>
<td>4.95</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>n</td>
<td>169.5</td>
<td>3.54</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>E</td>
</tr>
<tr>
<td>n</td>
<td>213.00</td>
<td>1.51</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>E</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4(4)</td>
<td>123.33</td>
<td>0.27</td>
<td>D</td>
<td>64(65)</td>
<td>123.76</td>
<td>5.32</td>
</tr>
<tr>
<td>n</td>
<td>165.07</td>
<td>0.26</td>
<td>D</td>
<td>53(56)</td>
<td>165.40</td>
<td>6.47</td>
</tr>
<tr>
<td>n</td>
<td>208.74</td>
<td>1.13</td>
<td>E</td>
<td>n</td>
<td>207.45</td>
<td>8.48</td>
</tr>
<tr>
<td>4(4)</td>
<td>10.00</td>
<td>0.08</td>
<td>D</td>
<td>11(11)</td>
<td>9.85</td>
<td>0.68</td>
</tr>
<tr>
<td>n</td>
<td>26.67</td>
<td>0.19</td>
<td>D</td>
<td>9(10)</td>
<td>26.97</td>
<td>1.00</td>
</tr>
<tr>
<td>n</td>
<td>51.22</td>
<td>0.27</td>
<td>E</td>
<td>9(10)</td>
<td>52.21</td>
<td>1.99</td>
</tr>
<tr>
<td>4(4)</td>
<td>10.57</td>
<td>0.06</td>
<td>D</td>
<td>50(52)</td>
<td>10.47</td>
<td>0.65</td>
</tr>
<tr>
<td>n</td>
<td>26.69</td>
<td>0.19</td>
<td>D</td>
<td>45(48)</td>
<td>26.49</td>
<td>1.80</td>
</tr>
<tr>
<td>n</td>
<td>46.34</td>
<td>0.46</td>
<td>E</td>
<td>44(48)</td>
<td>46.87</td>
<td>4.88</td>
</tr>
<tr>
<td>分析項目</td>
<td>分析方法 (コード)</td>
<td>試料名</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n'(N)</td>
<td>X</td>
<td>±SD</td>
<td>n'(N)</td>
</tr>
<tr>
<td>005 BUN</td>
<td>3. UV</td>
<td>A</td>
<td>7(7)</td>
<td>10.76</td>
<td>0.50</td>
<td>6(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>27.69</td>
<td>0.75</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>52.84</td>
<td>1.70</td>
<td>"</td>
</tr>
<tr>
<td>006 UA</td>
<td>1. Reducing</td>
<td>A</td>
<td>34(38)</td>
<td>2.76</td>
<td>0.24</td>
<td>30(33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>7.52</td>
<td>0.56</td>
<td>30(33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>8.60</td>
<td>0.58</td>
<td>30(33)</td>
</tr>
<tr>
<td></td>
<td>2. Enzyme</td>
<td>A</td>
<td>25(27)</td>
<td>2.78</td>
<td>0.36</td>
<td>32(33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>7.87</td>
<td>0.39</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>8.89</td>
<td>0.46</td>
<td>31(33)</td>
</tr>
<tr>
<td>007 T. Bil.</td>
<td>1. Egdelyn-Malloy</td>
<td>A</td>
<td>9(9)</td>
<td>0.71</td>
<td>0.26</td>
<td>8(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>"</td>
<td>1.3</td>
<td>0.37</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>"</td>
<td>3.36</td>
<td>0.49</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>2. Jendrassik</td>
<td>A</td>
<td>21(22)</td>
<td>0.80</td>
<td>0.13</td>
<td>19(20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>22(22)</td>
<td>1.84</td>
<td>0.23</td>
<td>18(20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>20(22)</td>
<td>3.46</td>
<td>0.35</td>
<td>18(20)</td>
</tr>
<tr>
<td></td>
<td>3. Alkaline-Azo Bilirubin</td>
<td>A</td>
<td>32(32)</td>
<td>0.80</td>
<td>0.11</td>
<td>35(36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>30(32)</td>
<td>1.78</td>
<td>0.16</td>
<td>34(36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>30(32)</td>
<td>3.43</td>
<td>0.26</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>4. Bilirubin Meter</td>
<td>A</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>008 IP</td>
<td>1. Fiske Subbarow</td>
<td>A</td>
<td>30(32)</td>
<td>1.19</td>
<td>0.18</td>
<td>28(29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>29(32)</td>
<td>2.04</td>
<td>0.20</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>31(32)</td>
<td>3.97</td>
<td>0.33</td>
<td>27(29)</td>
</tr>
<tr>
<td></td>
<td>2. Color Method</td>
<td>A</td>
<td>12(13)</td>
<td>1.17</td>
<td>0.19</td>
<td>17(18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>12(13)</td>
<td>2.08</td>
<td>0.17</td>
<td>18(18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>13(13)</td>
<td>4.16</td>
<td>0.33</td>
<td>17(18)</td>
</tr>
<tr>
<td>3日目</td>
<td>6日目</td>
<td>表示値</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
</tr>
<tr>
<td>4(1) 10.57 0.15 D</td>
<td>6(7) 10.65 0.20 D</td>
<td>6(6) 10.65 0.31 D</td>
<td>2(2) 10.65 0 — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 27.77 0.13 D</td>
<td>7(7) 27.73 1.09 E</td>
<td>8(8) 27.30 0.77 E</td>
<td>27.52 0.30 — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 52.96 0.28 E</td>
<td>— — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(1) 2.74 0.02 D</td>
<td>31(34) 2.75 0.15 D</td>
<td>32(33) 2.74 0.22 D</td>
<td>2(2) 2.75 0.07 N.S. 2.4 2.4～2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 7.60 0.07 D</td>
<td>34(36) 7.71 0.46 E</td>
<td>25(27) 7.64 0.23 E</td>
<td>7.68 0.05 N.S. — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 8.65 0.07 E</td>
<td>35(36) 8.69 0.59 E</td>
<td>30(33) 8.74 0.22 E</td>
<td>8.72 0.04 N.S. — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(1) 2.80 0.01 D</td>
<td>33(36) 2.82 0.23 D</td>
<td>31(33) 2.84 0.34 D</td>
<td>2(2) 2.83 0.01 N.S. 2.82.4～3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 7.92 0.05 D</td>
<td>26(27) 7.87 0.53 E</td>
<td>39(40) 7.96 0.31 E</td>
<td>7.92 0.06 N.S. 8.47.6～9.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 8.91 0.04 E</td>
<td>— — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(1) 0.76 0.04 D</td>
<td>8(8) 0.70 0.14 D</td>
<td>7(8) 0.79 0.07 D</td>
<td>2(2) 0.75 0.06 — 0.90.6～1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 1.74 0.09 D</td>
<td>9(9) 1.62 0.59 E</td>
<td>7(8) 1.69 0.12 E</td>
<td>1.66 0.05 — 2.01.6～2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 3.40 0.10 E</td>
<td>— — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(1) 0.79 0.02 D</td>
<td>25(26) 0.79 0.10 D</td>
<td>19(20) 0.78 0.15 D</td>
<td>2(2) 0.79 0.007 N.S. 1.00.7～1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 1.74 0.07 D</td>
<td>21(22) 1.78 0.23 E</td>
<td>24(25) 1.67 0.11 E</td>
<td>1.73 0.08 P<0.05 2.11.1～2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 3.30 0.12 E</td>
<td>20(22) 3.37 0.31 E</td>
<td>18(20) 3.23 0.37 E</td>
<td>3.33 0.06 N.S. 4.13.5～4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(1) 0.79 0.02 D</td>
<td>35(36) 0.74 0.05 D</td>
<td>35(36) 0.75 0.15 D</td>
<td>2(2) 0.75 0.007 N.S. 0.7～0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 1.73 0.06 D</td>
<td>31(32) 1.76 0.17 E</td>
<td>33(35) 1.67 0.09 E</td>
<td>1.72 0.06 P<0.01 — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 3.32 0.11 E</td>
<td>30(32) 3.39 0.27 E</td>
<td>33(36) 3.27 0.29 E</td>
<td>3.33 0.08 N.S. — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 — — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 — — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 — — — — — — — — — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(1) 1.16 0.02 D</td>
<td>29(29) 1.13 0.14 D</td>
<td>28(29) 1.16 0.14 D</td>
<td>2(2) 1.15 0.14 N.S. 1.00.7～1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 2.08 0.03 D</td>
<td>29(32) 2.05 0.23 E</td>
<td>28(30) 2.06 0.13 E</td>
<td>2.06 0.18 N.S. 1.91.5～2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 4.04 0.07 E</td>
<td>31(32) 4.02 0.31 E</td>
<td>28(29) 4.09 0.30 E</td>
<td>4.06 0.31 N.S. 4.13.5～4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(1) 1.14 0.02 D</td>
<td>18(19) 1.16 0.12 D</td>
<td>17(18) 1.17 0.16 D</td>
<td>2(2) 1.17 0.007 N.S. — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 2.04 0.03 D</td>
<td>12(13) 2.15 2.10 E</td>
<td>17(18) 2.04 0.13 E</td>
<td>0.13 0.08 N.S. — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n 4.02 0.10 E</td>
<td>12(13) 4.14 0.29 E</td>
<td>17(18) 3.99 0.19 E</td>
<td>0.19 0.11 N.S. — —</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分析項目</td>
<td>分析方法 (コード)</td>
<td>試料名</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n'(N)</td>
<td>X ± SD</td>
<td>n'(N)</td>
<td>X ± SD</td>
<td>n'(N)</td>
</tr>
<tr>
<td>009 Ca</td>
<td>OCPC</td>
<td>A 44(46)</td>
<td>8.46</td>
<td>0.48</td>
<td>42(46)</td>
<td>8.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 45(46)</td>
<td>11.11</td>
<td>0.47</td>
<td>43(46)</td>
<td>11.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 43(46)</td>
<td>14.06</td>
<td>0.56</td>
<td>45(46)</td>
<td>14.25</td>
</tr>
<tr>
<td></td>
<td>Flame Method</td>
<td>A 3(3)</td>
<td>8.11</td>
<td>1.01</td>
<td>3(3)</td>
<td>8.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B "</td>
<td>10.90</td>
<td>1.15</td>
<td>"</td>
<td>11.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C "</td>
<td>13.67</td>
<td>1.59</td>
<td>"</td>
<td>14.37</td>
</tr>
<tr>
<td>010 Al-P</td>
<td>K-K (KA-Unit)</td>
<td>A 42(46)</td>
<td>9.52</td>
<td>9.80</td>
<td>44(46)</td>
<td>9.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 44(46)</td>
<td>19.97</td>
<td>1.62</td>
<td>"</td>
<td>20.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C "</td>
<td>40.37</td>
<td>3.42</td>
<td>43(46)</td>
<td>40.43</td>
</tr>
<tr>
<td></td>
<td>Bessy Lowry</td>
<td>A 4(4)</td>
<td>71.42</td>
<td>17.19</td>
<td>5(5)</td>
<td>74.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B "</td>
<td>127.67</td>
<td>34.06</td>
<td>"</td>
<td>134.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C "</td>
<td>247.22</td>
<td>65.00</td>
<td>"</td>
<td>260.02</td>
</tr>
<tr>
<td></td>
<td>Hycel</td>
<td>A 0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Technicon Unit</td>
<td>A 10(10)</td>
<td>62.46</td>
<td>4.84</td>
<td>9(9)</td>
<td>61.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B "</td>
<td>113.30</td>
<td>9.81</td>
<td>"</td>
<td>113.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C "</td>
<td>210.70</td>
<td>20.90</td>
<td>"</td>
<td>217.10</td>
</tr>
<tr>
<td></td>
<td>Dupont</td>
<td>A 1(1)</td>
<td>4.50</td>
<td>0</td>
<td>1(1)</td>
<td>4.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B "</td>
<td>9.00</td>
<td>0</td>
<td>"</td>
<td>7.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C "</td>
<td>17.90</td>
<td>0</td>
<td>"</td>
<td>18.92</td>
</tr>
<tr>
<td>011 GOT</td>
<td>R-F (Karmen-Unit)</td>
<td>A 21(22)</td>
<td>25.24</td>
<td>3.24</td>
<td>16(17)</td>
<td>24.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 22(22)</td>
<td>46.68</td>
<td>3.87</td>
<td>"</td>
<td>47.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C "</td>
<td>88.36</td>
<td>9.06</td>
<td>"</td>
<td>90.56</td>
</tr>
<tr>
<td></td>
<td>Hycel Unit</td>
<td>A 0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B 0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(1 〜 4)全平均</td>
<td>3日目</td>
<td>6日目</td>
<td>(3日〜6日)</td>
<td>3日/6日</td>
<td>表示値</td>
<td>許容限界</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
</tr>
<tr>
<td>4(4)</td>
<td>8.43 ±0.02</td>
<td>D</td>
<td>44(47)</td>
<td>8.43 ±0.25</td>
<td>D</td>
<td>42(46)</td>
</tr>
<tr>
<td>′</td>
<td>11.17 ±0.06</td>
<td>D</td>
<td>42(46)</td>
<td>11.15 ±0.43</td>
<td>E</td>
<td>43(47)</td>
</tr>
<tr>
<td>′</td>
<td>14.22 ±0.12</td>
<td>E</td>
<td>43(46)</td>
<td>14.13 ±0.64</td>
<td>E</td>
<td>45(46)</td>
</tr>
<tr>
<td>4(4)</td>
<td>8.48 ±0.31</td>
<td>D</td>
<td>4(4)</td>
<td>8.37 ±0.31</td>
<td>D</td>
<td>3(3)</td>
</tr>
<tr>
<td>′</td>
<td>11.45 ±0.77</td>
<td>D</td>
<td>3(3)</td>
<td>10.77 ±1.43</td>
<td>E</td>
<td>′</td>
</tr>
<tr>
<td>′</td>
<td>14.33 ±0.85</td>
<td>E</td>
<td>′</td>
<td>13.30 ±2.21</td>
<td>E</td>
<td>′</td>
</tr>
<tr>
<td>4(4)</td>
<td>9.55 ±0.05</td>
<td>D</td>
<td>52(54)</td>
<td>9.54 ±0.79</td>
<td>D</td>
<td>44(46)</td>
</tr>
<tr>
<td>′</td>
<td>20.07 ±0.13</td>
<td>D</td>
<td>43(46)</td>
<td>20.43 ±1.64</td>
<td>E</td>
<td>49(52)</td>
</tr>
<tr>
<td>′</td>
<td>40.54 ±0.23</td>
<td>E</td>
<td>′</td>
<td>40.59 ±3.42</td>
<td>E</td>
<td>43(46)</td>
</tr>
<tr>
<td>4(4)</td>
<td>73.89 ±1.73</td>
<td>D</td>
<td>6(6)</td>
<td>75.98 ±10.35</td>
<td>D</td>
<td>5(5)</td>
</tr>
<tr>
<td>′</td>
<td>132.98 ±3.60</td>
<td>D</td>
<td>4(4)</td>
<td>127.47 ±33.05</td>
<td>E</td>
<td>′</td>
</tr>
<tr>
<td>′</td>
<td>256.92 ±6.60</td>
<td>E</td>
<td>′</td>
<td>250.10 ±63.54</td>
<td>E</td>
<td>′</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4(4)</td>
<td>63.17 ±1.85</td>
<td>D</td>
<td>8(8)</td>
<td>61.21 ±5.04</td>
<td>D</td>
<td>9(9)</td>
</tr>
<tr>
<td>′</td>
<td>114.51 ±2.59</td>
<td>D</td>
<td>10(10)</td>
<td>114.21 ±11.50</td>
<td>E</td>
<td>′</td>
</tr>
<tr>
<td>′</td>
<td>215.40 ±6.36</td>
<td>E</td>
<td>′</td>
<td>199.17 ±18.04</td>
<td>E</td>
<td>′</td>
</tr>
<tr>
<td>2(2)</td>
<td>4.65 ±0.21</td>
<td>D</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>′</td>
<td>8.05 ±1.34</td>
<td>D</td>
<td>1(1)</td>
<td>8.80</td>
<td>—</td>
<td>E</td>
</tr>
<tr>
<td>′</td>
<td>18.4 ±0.71</td>
<td>E</td>
<td>′</td>
<td>17.80</td>
<td>—</td>
<td>E</td>
</tr>
<tr>
<td>4(4)</td>
<td>24.67 ±0.46</td>
<td>D</td>
<td>17(18)</td>
<td>24.53 ±2.34</td>
<td>D</td>
<td>17(17)</td>
</tr>
<tr>
<td>′</td>
<td>46.22 ±0.88</td>
<td>D</td>
<td>21(22)</td>
<td>45.57 ±4.53</td>
<td>E</td>
<td>15(16)</td>
</tr>
<tr>
<td>′</td>
<td>88.91 ±1.13</td>
<td>E</td>
<td>21(22)</td>
<td>87.00 ±7.89</td>
<td>E</td>
<td>17(17)</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>分析項目</td>
<td>分析方法（コード）</td>
<td>試料名</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n'(N)</td>
<td>X</td>
<td>±SD</td>
<td>n'(N)</td>
<td>X</td>
</tr>
<tr>
<td>011 GOT</td>
<td>3. UV-End</td>
<td>A</td>
<td>9(9)</td>
<td>18.67</td>
<td>1.00</td>
<td>8(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>38.22</td>
<td>2.77</td>
<td>9(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>83.22</td>
<td>5.17</td>
<td>84.11</td>
</tr>
<tr>
<td>4. UV-Rate</td>
<td></td>
<td>A</td>
<td>19(22)</td>
<td>21.53</td>
<td>2.59</td>
<td>26(27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>21(22)</td>
<td>41.05</td>
<td>6.36</td>
<td>25(27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>90.24</td>
<td>11.42</td>
<td>26(27)</td>
</tr>
<tr>
<td>5. Technicon Uni</td>
<td></td>
<td>A</td>
<td>10(10)</td>
<td>13.80</td>
<td>10.08</td>
<td>9(10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>38.00</td>
<td>11.92</td>
<td>9(10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>98.30</td>
<td>12.78</td>
<td>10(10)</td>
</tr>
<tr>
<td>6. Dupon</td>
<td></td>
<td>A</td>
<td>1(1)</td>
<td>25.00</td>
<td>0</td>
<td>1(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>46.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>100.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>012 GPT</td>
<td>1. R-F (Kormen-Unit)</td>
<td>A</td>
<td>23(23)</td>
<td>19.48</td>
<td>2.78</td>
<td>16(17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>22(23)</td>
<td>37.00</td>
<td>3.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>21(23)</td>
<td>63.76</td>
<td>6.56</td>
<td></td>
</tr>
<tr>
<td>2. Hycel Unit</td>
<td></td>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3. UV-End</td>
<td></td>
<td>A</td>
<td>9(10)</td>
<td>18.78</td>
<td>2.82</td>
<td>9(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>38.33</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>72.78</td>
<td>7.77</td>
<td></td>
</tr>
<tr>
<td>4. UV-Rate</td>
<td></td>
<td>A</td>
<td>19(21)</td>
<td>18.58</td>
<td>3.29</td>
<td>27(27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>20(21)</td>
<td>39.85</td>
<td>6.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>21(21)</td>
<td>76.05</td>
<td>13.16</td>
<td></td>
</tr>
<tr>
<td>012 GPT</td>
<td>5. Technicon Unit</td>
<td>A</td>
<td>7(7)</td>
<td>25.60</td>
<td>2.07</td>
<td>7(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>58.57</td>
<td>6.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>117.29</td>
<td>13.06</td>
<td></td>
</tr>
<tr>
<td>(1 〜 4) 全平均</td>
<td>試料名</td>
<td>n'(N)</td>
<td>X</td>
<td>±SD</td>
<td>試料名</td>
<td>n'(N)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n'(N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4(4)</td>
<td>19.45</td>
<td>0.54</td>
<td>D</td>
<td>8(9)</td>
<td>19.00</td>
<td>2.00</td>
</tr>
<tr>
<td>n</td>
<td>38.73</td>
<td>0.42</td>
<td>D</td>
<td>8(9)</td>
<td>36.63</td>
<td>2.29</td>
</tr>
<tr>
<td>n</td>
<td>83.98</td>
<td>0.94</td>
<td>E</td>
<td>9(9)</td>
<td>82.78</td>
<td>6.59</td>
</tr>
<tr>
<td>4(4)</td>
<td>20.92</td>
<td>0.43</td>
<td>D</td>
<td>31(32)</td>
<td>20.55</td>
<td>2.17</td>
</tr>
<tr>
<td>n</td>
<td>41.67</td>
<td>0.95</td>
<td>D</td>
<td>21(22)</td>
<td>41.43</td>
<td>4.60</td>
</tr>
<tr>
<td>n</td>
<td>90.42</td>
<td>2.26</td>
<td>E</td>
<td>〃</td>
<td>90.19</td>
<td>9.64</td>
</tr>
<tr>
<td>4(4)</td>
<td>15.98</td>
<td>2.58</td>
<td>D</td>
<td>8(8)</td>
<td>13.13</td>
<td>8.35</td>
</tr>
<tr>
<td>n</td>
<td>41.21</td>
<td>2.94</td>
<td>D</td>
<td>10(10)</td>
<td>37.10</td>
<td>11.24</td>
</tr>
<tr>
<td>n</td>
<td>99.32</td>
<td>0.75</td>
<td>E</td>
<td>〃</td>
<td>99.00</td>
<td>13.38</td>
</tr>
<tr>
<td>2(2)</td>
<td>26.5</td>
<td>2.12</td>
<td>D</td>
<td>1(1)</td>
<td>47.00</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>47.5</td>
<td>2.12</td>
<td>D</td>
<td>1(1)</td>
<td>47.00</td>
<td>0</td>
</tr>
<tr>
<td>2(4)</td>
<td>19.49</td>
<td>0.52</td>
<td>D</td>
<td>17(18)</td>
<td>18.12</td>
<td>1.47</td>
</tr>
<tr>
<td>n</td>
<td>37.33</td>
<td>0.68</td>
<td>D</td>
<td>22(23)</td>
<td>36.09</td>
<td>4.64</td>
</tr>
<tr>
<td>n</td>
<td>63.34</td>
<td>0.81</td>
<td>E</td>
<td>21(23)</td>
<td>64.71</td>
<td>9.85</td>
</tr>
<tr>
<td>0</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
<td>D</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
</tr>
<tr>
<td>0</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
<td>D</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
</tr>
<tr>
<td>0</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
<td>E</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
<td>〜〜〜</td>
</tr>
<tr>
<td>4(4)</td>
<td>18.49</td>
<td>0.49</td>
<td>D</td>
<td>8(9)</td>
<td>17.88</td>
<td>1.55</td>
</tr>
<tr>
<td>n</td>
<td>38.84</td>
<td>0.57</td>
<td>D</td>
<td>10(10)</td>
<td>39.10</td>
<td>6.10</td>
</tr>
<tr>
<td>n</td>
<td>78.86</td>
<td>1.24</td>
<td>E</td>
<td>9(9)</td>
<td>72.78</td>
<td>7.64</td>
</tr>
<tr>
<td>4(4)</td>
<td>18.80</td>
<td>0.57</td>
<td>D</td>
<td>31(32)</td>
<td>19.84</td>
<td>4.31</td>
</tr>
<tr>
<td>n</td>
<td>40.40</td>
<td>1.07</td>
<td>D</td>
<td>20(21)</td>
<td>40.25</td>
<td>6.83</td>
</tr>
<tr>
<td>n</td>
<td>77.52</td>
<td>2.62</td>
<td>E</td>
<td>21(21)</td>
<td>77.05</td>
<td>13.31</td>
</tr>
<tr>
<td>4(4)</td>
<td>28.02</td>
<td>1.64</td>
<td>D</td>
<td>6(6)</td>
<td>29.67</td>
<td>3.37</td>
</tr>
<tr>
<td>n</td>
<td>61.96</td>
<td>2.42</td>
<td>D</td>
<td>7(7)</td>
<td>59.43</td>
<td>8.22</td>
</tr>
<tr>
<td>n</td>
<td>119.98</td>
<td>4.73</td>
<td>E</td>
<td>〃</td>
<td>117.71</td>
<td>13.14</td>
</tr>
</tbody>
</table>

日健診誌 JAMHTS Vol. 9 No. 1 1982年
<table>
<thead>
<tr>
<th>分析項目</th>
<th>分析方法 (コード)</th>
<th>試料名</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>n'(N)</td>
<td>X</td>
<td>±SD</td>
<td>n'(N)</td>
</tr>
<tr>
<td>012 GPT</td>
<td>6. Dupon</td>
<td>A</td>
<td>1 (1)</td>
<td>25.00</td>
<td>0</td>
<td>1 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>n</td>
<td>52.00</td>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>n</td>
<td>101.00</td>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>013 LDH</td>
<td>1. CW Colorimetry (P-L)</td>
<td>A</td>
<td>9 (10)</td>
<td>303.78</td>
<td>24.98</td>
<td>6 (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>10 (10)</td>
<td>523.60</td>
<td>81.72</td>
<td>541.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>n</td>
<td>777.20</td>
<td>89.35</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>2. Color Method Colorimetric (L,P)</td>
<td>A</td>
<td>13 (14)</td>
<td>275.77</td>
<td>25.88</td>
<td>15 (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>14 (14)</td>
<td>523.64</td>
<td>48.56</td>
<td>526.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>n</td>
<td>770.93</td>
<td>60.87</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>3. UV Rate (P-L)</td>
<td>A</td>
<td>22 (23)</td>
<td>313.64</td>
<td>23.18</td>
<td>23 (24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>n</td>
<td>599.86</td>
<td>47.64</td>
<td>611.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>n</td>
<td>904.82</td>
<td>86.68</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>4. UV Rate (L-P)</td>
<td>A</td>
<td>3 (3)</td>
<td>299.00</td>
<td>81.07</td>
<td>7 (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>n</td>
<td>387.33</td>
<td>121.89</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>n</td>
<td>547.67</td>
<td>153.64</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>5. Hycel</td>
<td>A</td>
<td>1</td>
<td>212.00</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>n</td>
<td>423.00</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>n</td>
<td>661.00</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6. Dupont</td>
<td>A</td>
<td>1</td>
<td>138.00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>n</td>
<td>276.00</td>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>n</td>
<td>428.00</td>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>7. Technicon Unit</td>
<td>A</td>
<td>8 (8)</td>
<td>167.25</td>
<td>15.28</td>
<td>6 (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>7 (8)</td>
<td>312.57</td>
<td>13.88</td>
<td>7 (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>8 (8)</td>
<td>481.87</td>
<td>29.28</td>
<td>6 (7)</td>
</tr>
</tbody>
</table>
自動化診断学会施設の'80年度生化学サーベイ報告

| (1 ～ 4) 全平均 | 試料名 | 3日目 | 試料名 | 6日目 | (3日 ～ 6日)全平均 | 3日/6日 | 表示値 | 許容限界
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td></td>
</tr>
<tr>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td>n'(N)</td>
<td>X ±SD</td>
<td></td>
</tr>
<tr>
<td>2(2)</td>
<td>29.0</td>
<td>5.66</td>
<td>D</td>
<td>0</td>
<td>(Ⅲ)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n</td>
<td>58.0</td>
<td>8.49</td>
<td>D</td>
<td>1(1)</td>
<td>(Ⅰ)</td>
<td>54.00</td>
<td>0</td>
<td>E</td>
</tr>
<tr>
<td>n</td>
<td>107.0</td>
<td>8.48</td>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2(4)</td>
<td>299.75</td>
<td>2.94</td>
<td>D</td>
<td>7(7)</td>
<td>(Ⅲ)</td>
<td>300.29</td>
<td>18.59</td>
<td>D</td>
</tr>
<tr>
<td>n</td>
<td>544.46</td>
<td>16.06</td>
<td>D</td>
<td>10(10)</td>
<td>(Ⅰ)</td>
<td>541.40</td>
<td>70.89</td>
<td>E</td>
</tr>
<tr>
<td>n</td>
<td>793.28</td>
<td>12.19</td>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2(4)</td>
<td>278.37</td>
<td>2.28</td>
<td>D</td>
<td>15(15)</td>
<td>(Ⅲ)</td>
<td>276.93</td>
<td>18.58</td>
<td>D</td>
</tr>
<tr>
<td>n</td>
<td>525.02</td>
<td>4.16</td>
<td>D</td>
<td>23(23)</td>
<td>(Ⅰ)</td>
<td>529.07</td>
<td>43.58</td>
<td>E</td>
</tr>
<tr>
<td>n</td>
<td>796.54</td>
<td>5.39</td>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2(4)</td>
<td>315.16</td>
<td>2.19</td>
<td>D</td>
<td>25(28)</td>
<td>(Ⅲ)</td>
<td>314.00</td>
<td>19.80</td>
<td>D</td>
</tr>
<tr>
<td>n</td>
<td>609.65</td>
<td>6.81</td>
<td>D</td>
<td>23(23)</td>
<td>(Ⅰ)</td>
<td>609.43</td>
<td>55.98</td>
<td>E</td>
</tr>
<tr>
<td>n</td>
<td>918.95</td>
<td>10.69</td>
<td>E</td>
<td>22(23)</td>
<td>(Ⅰ)</td>
<td>906.95</td>
<td>90.20</td>
<td>E</td>
</tr>
<tr>
<td>2(4)</td>
<td>217.31</td>
<td>10.60</td>
<td>D</td>
<td>7(7)</td>
<td>(Ⅲ)</td>
<td>225.45</td>
<td>84.92</td>
<td>D</td>
</tr>
<tr>
<td>n</td>
<td>415.73</td>
<td>27.76</td>
<td>D</td>
<td>3(3)</td>
<td>(Ⅰ)</td>
<td>362.77</td>
<td>112.52</td>
<td>E</td>
</tr>
<tr>
<td>n</td>
<td>618.62</td>
<td>55.12</td>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1(1)</td>
<td>212.00</td>
<td>—</td>
<td>D</td>
<td>0</td>
<td>(Ⅲ)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>n</td>
<td>423.00</td>
<td>—</td>
<td>D</td>
<td>1(1)</td>
<td>(Ⅰ)</td>
<td>424.00</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>n</td>
<td>661.00</td>
<td>—</td>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2(2)</td>
<td>134.00</td>
<td>5.66</td>
<td>D</td>
<td>0</td>
<td>(Ⅲ)</td>
<td>—</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>n</td>
<td>272.00</td>
<td>5.66</td>
<td>D</td>
<td>1(1)</td>
<td>(Ⅰ)</td>
<td>278.00</td>
<td>0</td>
<td>E</td>
</tr>
<tr>
<td>n</td>
<td>421.00</td>
<td>9.90</td>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4(4)</td>
<td>164.86</td>
<td>2.33</td>
<td>D</td>
<td>6(6)</td>
<td>(Ⅲ)</td>
<td>160.67</td>
<td>7.12</td>
<td>D</td>
</tr>
<tr>
<td>n</td>
<td>313.86</td>
<td>1.62</td>
<td>D</td>
<td>8(8)</td>
<td>(Ⅰ)</td>
<td>326.62</td>
<td>25.51</td>
<td>E</td>
</tr>
<tr>
<td>n</td>
<td>476.15</td>
<td>4.35</td>
<td>E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

日健診誌 JAMHTS Vol. 9 No. 1 1982年 77
4. 測定方法の実績

表1の計画に従って4回のサーベイの成績を分析項目13、分析方法の全部について、一覧表に示した（表4）。参加施設がこの表にもとづいて再検討を加えて、より見通し精度管理の向上に役立っていただけたい。表中の各欄について説明する。分析項目欄は13項目である。分析方法欄は61種類中その他を除き48方法を示した。試料各欄は各測定初日をA B Cと統一した記号を用いていたのでそのままで示した。3日目、6日目のD Eは分析項目ごとに設定したものを、ランダムに設定して、次の1～4の欄はサーベイ回数で3月6月9月12月と一ヶ月間に均等に実施した。n'（N）欄
はn' = 2SD over cut後の施設数である。X欄、
±2SD欄は2SD over cut後の平均値および標準偏差である。（1～4）全平均値は4回のサーベイの平均値と標準偏差を示し、各回毎、各施設の変動をみることができます。次の3日目、6日目の15欄
は各施設で実測した当日を初日とし、試料を半月
残して、さらに3日目および6日日の再測定を実施した。全ての測定は充分に重複測定された値が報告されていることから、各施設データは信頼度が高まっていることは明らかである。これを基にして評価できることは①液状試料の安定性が判断できる。②初日、3日目、6日目の間に相時変化がみられるか。③各施設の日差再現性をみることができる。（3日6日）全平均欄は前記
①、②において安定性が保証されていれば日差間の安定性および精度をみることができるものがで
ある。次の3日目、6日目の有意差検定欄で上記の条件が満足されていれば3日目と6日目のデータ
有意差がなければさらに安定性を判定できるものと考えられる。表示価値欄では用いた液状試料に
表示されている値は信頼度の高いデータであること
から、自腎症施設の分析方法と同一測定方法ま
たは近似した方法に基づく試料の表示値を比較し
てみることにより、正確度の面から、観察できる
ものと思われる。このことは参加数の多い分析方
法について比較できる。そこで表に従って各分析
項目で最もも参加数の多い分析方法について解
説する。

001 TP Method-2, Biuret n = 55～60

初日測定のABC（低中高値）試料はほぼ良好
であるが第1回のC値が大きくパラッキがみられ
た。3日目6日目の低中値は良好であるが高値
SDが0.3g/dl とやや大きかった。4回の全平均
と3日目6日目の全平均とも有意差（P<0.001）
は無く、精度は良好であった。また、表示値と
の比較をみてもよく一致した値がえられているこ
とから長期間の正確度も満足できるものである。

002 ALb Method-1 BCG n = 53～60

初日測定のABC試料は4回とも良好な再現性
を示している。3日目6日目の値も良好で有意差
（P<0.001）は無かった。表示値との差も0.1g/dl
以内で正確度も一致し良好であった。

003 GLC Method-2 Enzyme n = 59～63

初日測定のABC試料のABは4回とも良好な
再現性を示しているがC試料は7～11の±SD を
もちやや広がったが平均値はわずかな動きに止ま
った。3日目6日目の有意差（P<0.001）
は無く、表示値との差も3～7mg/dl 以内に、
良好な正確度の一致を保っていた。グルコースは分
解しやすい項目であるが、測定使用の前後を直ち
に冷蔵保存するよう指示したことが良好になった
一因とも思われた。

004 Cho Method-4 Enzyme n = 56～65

初日測定のABC試料のABは良好な結果であ
るが、C試料は1、2回に変動がみられた。3日
目、6日目の有意差（P<0.001）はなく良好であ
った。表示値との差も1mg/dl 程度一致し、長
期間の正確度も良好であった。

005 BUN Method-2 Urease Indophenol n =
48～52

初日測定ABC試料のABは良好な再現性を示
したがCは4回とも3～5±SD と大きく変動し
た。3日目6日目の有意差（P<0.001）は
ないが、C試料は3～4±SD と大きくかった。表示値と
比較するとAB試料は一致しているが、C試料は
その範囲内であった。正確度はほぼ良好であっ
た。

006 UA Method-2 Enzyme n = 27～41

初日測定のABC試料とも0.2～0.5±SD 以内
で良好であり、還元元（n=38～27）とほぼ同様
であった。3日目6日日にも有意差（P<0.001）
はなく良好であった。表示値ではAは一致したが、BC（高値）では0.5g/dl低くえられたが許容限界内であった。長期間の正確度もほぼ良好であった。

007 T.Bil Method-3 Alkaline-AzoBilirubin n=32～36

初日測定のABC試料のABはほぼ良好であるが、Cは平均に対し変動した。測定中試料への光の影響がうかがわれた。3日目6日目の有意差は無いか、CはP<0.01と幅が大きくなった。表示値との比較はJendrassikでみると0.2～0.8と差が高値ほど大きく、Cは許容限界からはずれた。しかしこの数がやや少ないので参考にとどめる。

008 IP Method-1 Tiske-Subbarow(Reducing) n=30～32

初日測定のABC試料のABは良好であるが、Cは4回の平均値に対し大きく変動した。高値の測定にバラツキ傾向がある。3日目6日目の有意差（P<0.001）はない。表示値では0.1mg/dl程度で一致し、長期間の正確度も良好であった。

009 Ca Method-1 OCPC n=46～48

初日測定のABC試料のABは良好であるが、Cは0.5～0.6±SDの変動を示した。高値の測定にややバラツキがあるものと思われた。3日目6日目の有意差（P<0.001）はないが、C試料は0.6mg/dlの変動があった。表示値では0.2mg/dl以内でよく一致し、長期間の正確度は良好であった。

以上までが成分系での比較であるが、4回のサーベイではC試料（高値）はややバラツキがみられたが全体的に良好な再現性であった。3日目6日目とも全体的に有意差はなかった。表示値に対する比較でもBilirubinを除いてはよく一致し、長期間のものとしての正確度は満足できるものであった。このように重複測定を前提とし、さらに3日目6日目の保存性および日差間の精密度、正確度を観察したサーベイは類がないものと思われた。

次に酵素系4項目について解析する。
010 Al-P Method-1 Kind-King n=46～54

初日測定のABC試料のABは良好な再現性であるが、Cはやや変動幅が大きいが平均値に対しては良好である。3日目6日目の有意差（P<0.001）はなく日差間の再現性も良好であった。

011 GOT Method-4 UV-Rate n=22～32

初日測定のABC試料のAは良好な再現性を示しているが、Bは1、2回はやや変動がみられたが、3、4回は安定している。Cは各回とも平均に対して大きくバラツキが目立つ。本法は90mU/mlの高値では変動する傾向が推定された。3日目6日目的有意差（P<0.001）はないが、C試料は大きな±SD幅を示した。20～50mU/mlレベルのAB試料の日差再現性は良好であった。

012 GOT Method-4 UV-Rate n=21～32

初日測定のABC試料のABは良好な再現性を示したが、Cは平均に対して各回とも大きく変動した。3日目6日目の有意差（P<0.001）はないが、Cは大きく変動していた。80mU/mlレベルでの本法はバラツキ傾向がみられた。しかし20～40mU/mlレベルのABでは安定した日差再現性を示した。

013 LDH Method-3 UV-Rate（P→L）n=23～29

初日測定のABC試料のABは良好な再現性を示したが、Cはやや変動したが平均からのずれはあまりみられなかった。3日目6日日の有意差（P<0.001）はみられなかったが、Cはやや変動した。本法は900mU/mlレベルではややバラツキ傾向がみられた。しかし300～600mU/mlレベルのABでは良好な日差再現性を示した。

以上の酵素4項目ではサーベイごとの再現性および3日目6日日の日差再現性は低、中値において良好であったが、高値レベルはいずれも大きな変動を示していた。これは酵素測定の条件の設定のむずかしさ（試料、試薬、温度、検出感度、係数など）が予想された。

今回、同一の表現単位の表示値がなかったので、正確度について比較検討はできなかった。

5．実行評価比率（1～4回の平均）

図1はサーベイ第1回から4回目までの合計の平均である。75％以上の実行評価比率が満足されることからほとんどの施設が良好であるとされた。各施設で年間平均の位置を知り、他評価と比較
6. 年間実行評価比率推移

（図2）縦軸にサーベイ回数を4回までとり横軸に実行評価比率（%）をとって各施設の評価の変動を観察できる。ここで解ることは（1）常に良好な成績である施設、（2）前半は良好であったが後半は悪化した施設およびこの逆の成績の施設、（3）各回バラバラな成績の施設、（4）常に悪い成績の施設などである。

各施設が各回の評価をするには（図3）に全体の各回の平均値と範囲を示したので、これを利用して成績を判定することができる。

7. まとめ

(1) 複数対試料の低中高の3濃度を利用することにより、各施設での相対誤差を無にできた。

(2) 初日測定値、3日目、6日目の各測定値は充分に重複測定を行った信頼度の高いデータがえられることにより、長期間の精密度および各施設の日差再現性が良好であることが判明した。

(3) 成分系（TP, Alb, Glu, Cho, BUN, UA,

図1

図2
ビリルビン（Bil, IP, Ca）ではおおむね、表示値と一致し長期間の正確度はn数の多い分析方法において良好であることが判断された。

④ 実行評価比率（%）の各回ごと、年間平均、および年間推移を観察することは各施設の努力目標とすることができる。

本稿を終るに当り、千葉大学病院検査部、中村講師、大

阪P L病院、出口栄治氏、三井記念病院、黒沢徹子氏、下村弘治氏らのご協力に深く感謝する次第である。

文献

1) BECKMAN DECISIONTM : DECISION comprehensive Assay Listings : Backman Instructions 015-555645-E. 1980