Identical Twins with Long QT Syndrome
Associated with a Missense Mutation in the S4 Region of the HERG

Kenshi HAYASHI, MD, Masami SHIMIZU, MD, Hidekazu INO, MD,
Kazuyasu OKEIE, MD, Masato YAMAGUCHI, MD,
Toshihiko YASUDA, MD, Noboru FUJINO, MD,
Hiroyuki FUJI, MD, Shinichiro FUJITA, MD,
and Hiroshi MABUCHI, MD

SUMMARY
Familial long QT syndrome (LQTS) is caused by mutations in genes encoding ion channels important in determining ventricular repolarization. Mutations in at least five genes have been associated with the LQTS. Four genes, KCNQ1, HERG, SCN5A, KCNE1, and KCNE2, have been identified. We have identified a missense mutation in the HERG gene in identical twins in a Japanese family with LQTS. The identical twins in our study had QT prolongation and the same missense mutation. However only the proband had a history of syncope. Although many mutations in LQT genes have been reported, there are few reports of twins with LQTS. This is the first report, to our knowledge, of identical twins with a HERG gene mutation. (Jpn Heart J 2000; 41: 399-404)

Key words: LQTS, HERG gene mutation, Identical twin, Long QT syndrome, Romano-Ward Syndrome

Familial long QT syndrome (LQTS): Romano-Ward syndrome and Jervell and Lange-Nielsen syndrome), an inherited cardiac disorder that results in syncopal attacks and sudden death,1) is characterized by prolongation of the QT interval indicating abnormal cardiac repolarization. Genetic linkage analysis has revealed that the autosomal dominant form of LQTS is genetically heterogeneous. At least 6 LQTS loci have been identified:2-9 11p15.5 (LQT1), 7q35-36 (LQT2), 3p21-24 (LQT3), 4q25-27 (LQT4), 21q22.1-22.2 (LQT5), and 2lq 11.1 (LQT6). While identical twins have the same genotype (genetic abnormality) and phenotype (LQTS), only a few reports of identical twins with the genotype and phenotype have been published.10-13) In this report, we describe a missense mutation in the S4
region of the HERG in identical twins with long QT syndrome.

METHODS

Case Report: The proband is a 28-year-old Japanese male who experienced syncopal episodes while sleeping. He was admitted to our hospital for evaluation. Physical examination, hematologic examination, urinalysis, and audiometrics were normal. Serum K, Mg, and Ca concentrations were also within normal limits. He had a QTc interval of 0.49 seconds (Figure 1), corresponding to a score of 6 points based on the 1993 LQTS criteria, which confirmed a diagnosis of LQTS. The QTc intervals during and after treadmill exercise test increased significantly (Figure 2). The proband has an identical twin brother. The brother and his mother had QTc intervals of 0.51 and 0.47 seconds, respectively (Figure 1) but did not have a history of syncope. The electrocardiograms of the father and elder brother of the proband were within normal limits (Figure 1).

DNA Isolation and Mutation Analysis: Genomic DNA was purified from white blood cells obtained from family members, and in vitro amplifications of genomic DNA were performed by polymerase chain reaction (PCR). Oligonucleotide primers used for the amplification were based

![Figure 1. Electrocardiograms (leads II, aVF, V2 and V5) from the LQTS family members.](image_url)
Screening for mutations in the HERG gene with SSCP analysis identified an abnormal SSCP conformer in the twins and the mother in this Japanese family (Figure 3A), but not in > 100 control individuals. Sequence analysis of the abnormal SSCP conformer revealed a nucleotide substitution (C→G) in the S4 region which was predicted to substitute cysteine for arginine at codon 534 (R534C; Figure 3B). This missense mutation has been previously described.\(^{18}\) Screening for mutations in the KCNQ1 and SCN5A with SSCP did not show any abnormal SSCP conformers compared to control (data not shown).
In this report, we identified a missense mutation in the HERG gene associated with LQTS in a Japanese family that includes identical twins with LQTS. LQTS twins have been reported previously10-13. Among these investigators, only Russell, et al13 performed mutational analysis, and they demonstrated mutation of the KCNQI gene in monozygotic twin offspring of unaffected parents. Our study is the first to describe identical twins with HERG gene mutation.

Greenspon, et al10 described a set of triplets which included two identical siblings with symptomatic congenital LQTS. The identical siblings had similar symptoms and electrocardiographic abnormalities, while the fraternal sibling was asymptomatic and had a normal electrocardiogram. The identical twins in our study had QT prolongation and the same missense mutation, but only the proband had a history of syncope.

Syncope in patients with long QT syndrome is frequently associated with an abrupt increase in sympathetic activity, such as that caused by emotional stress or physical activity. According to Nakajima, et al19 auditory stimuli may trigger cardiac adrenergic activity and may be a significant risk factor for ventricular tachyarrhythmias and subsequent cardiac syncope or sudden cardiac death. Moreover, according to Wilde, et al20, arrhythmic events triggered by auditory stimuli may differentiate LQTS2 from LQTS1 patients. They20 described that in 9 out of 15 symptomatic gene carriers in HERG-based families, acoustic stimuli were related to syncope, but none of the 23 symptomatic carriers of a mutated KCNQ1 gene reported syncope related to auditory stimuli.

In our study, the proband had experienced two syncopal episodes at 26 years of age and at 28 years of age, with the former event occurring around midnight and
the latter early in the morning. He did not use an alarm clock, but syncope may have occurred when he was awakened by a noise at night or early in the morning. Differences in the environment may be responsible for differences in the phenotype of these identical twins. Nevertheless, the twin brother of the proband should be monitored for cardiac events because he is at high risk for experiencing such events.

The R534C substitution is found in the S4 region of the HERG. In a previous study, Itoh, et al. reported this mutation in five patients in three generations of a Japanese family with LQTS. Arginine in the S4 region of the HERG is highly conserved in this gene and is thought to function as a voltage sensor, which is one of the key functions required of an ion channel.

In conclusion, we have identified a missense mutation in the HERG gene in identical twins in a Japanese family with LQTS. There are few reports of twins with LQTS, and this is the first report, to our knowledge, of identical twins with a HERG gene mutation.

REFERENCES

