Clinical Studies

Design and Rationale of the Japanese Coronary Artery Disease (JCAD) Study
A Large-scale, Multicentered Prospective Cohort Study

JCAD study Investigators and Operation Secretariat headed by
Doubun HAYASHI,1 MD, and Tsutomu YAMAZAKI,2 MD

SUMMARY

Since there is insufficient evidence on patients with coronary artery disease in Japan, the Japanese Coronary Artery Disease (JCAD) Study, in which 217 institutions participate, was designed to collect basic data based on evidence-based medicine (EBM). In this study, cardiac catheterization is performed on all cases to select study subjects confirmed as having CAD diagnosed based on the criteria that he or she has stenosis in at least one branch of a coronary artery to the extent of 75% or higher according to the AHA classification. Data including background information, risk factors, clinical management, and medication are to be collected over the web. The follow-up arm of the study consists of following each subject for three years to obtain data on the long-term prognosis of patients with CAD while the other arm is for enrolling new subjects every six months who will be followed for six months only for the purpose of determining the latest trend in patients. The two arms of the study have been ongoing since April 2000. As of September 30, 2003, 15,506 subjects have been enrolled in the follow-up arm and the follow-up data have been entered in the database. The authors plan to report data showing any correlation between incidence rate, focusing mainly on cerebrocardiovascular events, and other factors such as the management of risk factors, and type and dosage of medications obtained in the largest cohort ever studied in Japan of patients with a coronary artery lesion confirmed by cardiac catheterization. (Jpn Heart J 2004; 45: 895-911)

Key words: Coronary artery disease, Coronary risk factors, Japanese prospective cohort, Major cardiovascular event (MACE), Pharmacological treatment, Registration via Web

DYNAMIC statistics of the Japanese population in 19991) show that the number of deaths from heart disease amounts to 151,079 a year, which corresponds to 15.4% of all deaths, and is second to only those from malignant neoplasms. Considering that coronary artery disease (CAD) is responsible for the majority of deaths from heart disease, seeking an approach to the trends in patients with CAD
and the coronary risk factors behind it is one of the most important tasks for clinicians.

In European countries as well as in the USA, the frequency of occurrence of CAD has traditionally been high and many cohort studies such as the Framingham Study\(^2\) have been conducted. These studies have shown that the combination of various factors including smoking, hypertension, diabetes and hypercholesterolemia is responsible for the onset of CAD. Based on these findings, many related societies and organizations have issued various guidelines,\(^3\)-\(^6\) aiming at helping people properly manage known risk factors, and these have resulted in a certain level of success. In Japan too, several important cohort studies such as the Hisayama Study,\(^7\) Hiroshima-Nagasaki Study,\(^8\) and J-LIT\(^9\) were published. Based on the findings of these studies, various guidelines were prepared and attempts have been made to apply these guidelines to day-to-day clinical practice. However, the guidelines were, in fact, prepared by importing European and American guidelines without substantial modification due to the shortage in absolute quantity of data accumulated in Japan as a whole which determines treatment. Further, taking into account the report\(^10\) that according to the data obtained so far in Japan, the mortality of CAD is one-third to one-fifth as much as that in Europe and the USA, for both physicians and patients, it may not be easy to comply with the Japanese guidelines prepared by referring to European and America guidelines.

However, as Japanese people continue to increasingly adopt a Western lifestyle, it is believed the incidence of CAD will increase in Japan in the near future as it has in Europe and the USA. It is conceivable that before long Japanese clinicians will find themselves in an environment demanding they focus more on the prevention and treatment of CAD. Therefore, it is a matter of urgent necessity to construct an original database that will serve as the basis of clinical practice which incorporates disease structures peculiar to Japan, including the facts that there are more cases of cerebrovascular disease than those of CAD, and that the incidence of hypertension is overwhelmingly higher than other diseases.

This study was planned to offer guidance for the preparation of treatment guideline(s) for Japanese patients, by way of investigating the current status of medical treatment and management of risk factors in CAD patients, and grasping the correlation between background factors and the occurrence of cerebrocardiovascular events. To be more specific, this is a large-scale, multicentered prospective cohort study (observational study) aiming at a total enrollment of approximately 20,000 subjects. Fifty-five advisors and administrators were selected from major regional hospitals performing many cardiac catheterization procedures. In total, 217 institutions have participated in the study.
PURPOSE

The JCAD Study aims at offering fundamental data which can contribute to evidence-based medicine (EBM) for the treatment and management of patients with CAD by investigating sequentially how CAD patients are treated and how their risk factors are managed in Japan, and further, by gaining information on the incidence of major cerebrocardiovascular events.

STUDY DESIGN AND SUBJECTS

This study has two concurrently ongoing arms, one following the same subjects for three years with a follow-up examination every six months (Follow-up Study), the other enrolling new subjects every six months with a follow-up period of six months (Trend Study) (see Figure 1). For both the Follow-up and Trend Studies, at the time of performing cardiac catheterization during the enrollment period, patients having significant stenosis of at least 75% according to the AHA classification in one or more branches of a coronary artery and whose clinical information six months later is available to investigators were continuously enrolled until the target number of cases allocated to each institution was achieved. Subjects were enrolled regardless of age or sex. Subjects whose cerebrocardiovascular event, including death was confirmed within six months of enrollment were included in the study, even though their clinical information six months later was not available.

Follow-up Study (to follow the same subjects for three years. Simultaneously serves as the first enrollment of the Trend Study):

i) Age/sex: no preference.
ii) To enroll all the subjects who have received cardiac catheterization during a one-year period from April 2000 through March 2003 and who meet all of the following three conditions:
 (1) Subjects who have significant stenosis of at least 75% according to the AHA classification in a coronary artery at the time of cardiac catheterization;
 (2) Subjects who are retained as outpatients of the same institution six months after cardiac catheterization; and
 (3) Subjects who are not retained as outpatients of the institution but whose cardiac event (including death) is confirmed within six months of cardiac catheterization.

Trend Study (to enroll subjects every six months who are not enrolled in the Follow-up Study to follow them for six months only.):

i) Age/sex: no preference.
ii) To enroll subjects who have undergone cardiac catheterization during the following period. Other criteria are the same as for the Follow-up Study.
A: Follow-up Study

Patient enrollment period

April 2000 March 2001

CAG

\[\text{at the time of discharge after CAG} \]

\[\begin{array}{cccccc}
0 & 6 & 12 & 18 & 24 & 30 & 36 (M) \\
\end{array} \]

\[\uparrow \text{Investigation by CRC (Data collection from each patient's record)} \]

\[\ast \text{Investigation is performed every six months compiling data obtained during the previous months.} \]

B: Trend Study

Patient enrollment period

(2nd to 6th stage)

CAG

\[\begin{array}{cccc}
0 & 6 & (M) \\
\end{array} \]

\[\uparrow \ast \]

*Investigation is performed six months after enrollment compiling data obtained during the previous months.

Figure 1. Schematic representation of the Follow-up (A) and Trend (B) Studies.

METHOD, PROTECTION OF PRIVACY, AND ETHICS

An enrollment system was established within the University Hospital Medical Information Network (UMIN) and subjects were enrolled through the web by participating institutions located throughout Japan. For security purposes, an ID
and password used exclusively by a responsible investigator at each institution and a cryptocommunication system (SSL128bit) were employed. To protect subject privacy, only the system manager was allowed access to case card numbers and birth dates which identify the individual patients. Other participants, including the secretariat and administrators of the study, were denied access to such information. Access to individual patient data was given only to the attending physician in charge of each patient. Further, in principle, case records were to be prepared by physicians themselves or by a Clinical Research Coordinator (CRC) being overseen by physicians. In addition, each physician was to confirm whether the data had been entered correctly.

Table I. JCAD Study Items to be Investigated (A: Follow-up Study, B: Trend Study)

A: Follow-up Study (Following-up each patient for 3 years)

<table>
<thead>
<tr>
<th>Background</th>
<th>CAG*</th>
<th>6M</th>
<th>12M</th>
<th>18M</th>
<th>24M</th>
<th>30M</th>
<th>36M</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHD diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary imaging & treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient's medical history</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD risk factors</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Medication</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Lifestyle improvement therapy Y/N</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Event</td>
<td>○ (observation throughout the study period)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The investigation items have to be determined on the date defined above or before/after one month from the date.

B: Trend Study (enrolling new patients every six months, following the patients only for six months thereafter)

<table>
<thead>
<tr>
<th>Background</th>
<th>CAG*</th>
<th>6M</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHD diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary imaging & treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient's medical history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD risk factors</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Medication</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Lifestyle improvement therapy Y/N</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Event</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

The investigation items have to be determined on the date defined above or before/after one month from the date.

* At the time of CAG: values obtained on the latest date before discharge (during hospitalization for check-up) have to be entered.
1) Clinical Research Review Board
 In principle, the Clinical Research Review Board of each participating institution reviews and approves the study protocol and other documents, and evaluates the study on an ongoing basis.

2) Informed Consent
 In principle, each attending physician explains the study to each candidate patient and obtains his or her voluntary written informed consent prior to enrollment.

3) Confidentiality of Data
 In reporting the data collected, the physician, CRC, staff members of the Study Secretariat, and others use a case card number or subject number (designated by UMIN after enrollment).

PARAMETERS TO BE DETERMINED

For the subjects who were enrolled after cardiac catheterization, data on medications administered before cardiac catheterization, risk factors, and results of the catheterization procedure, diagnosis at the time of catheterization procedure, previous disease (treatment), if any, site of stenosis, extent of stenosis, treatment performed after catheterization procedure (percutaneous transluminal angioplasty, coronary artery bypass, etc.) were recorded. Further information regarding how coronary risk factors such as hyperlipidemia, impaired glucose tolerance, hypertension, smoking, and drinking are managed, as well as laboratory data obtained at that time regarding total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), low density lipoprotein cholesterol (LDL-C; Friedewald formula), fasting blood glucose (FBG), HbA1c, blood pressure, body mass index (BMI), uric acid (UA), lipoprotein small a (Lp (a)), C-reactive protein (CRP), and cardiac failure, if any, were collected at enrollment and every six months thereafter. In the case of acute disease such as myocardial infarction, hematological data obtained during a stable phase were recorded. These data were to be entered every six months (see Table I).

With the endpoint being all cerebrocardiovascular events, in case such an event should occur after enrollment, a description of the event, treatment, and outcome were recorded any time such an event occurred. "Event" is defined as the case where the subject develops a new cerebrocardiovascular disease or experiences a recurrence of such a disease after the cardiac catheterization procedure or treatment performed following such a procedure. If there are no symptoms of ischemia and restenosis is confirmed by regular cardiac catheterization, such a case is to be excluded from “event”.
ANALYSES

In the Follow-up and Trend Studies, enrolled cases will be analyzed by the “intention-to-treat” method. The following analyses are planned for each of the studies:

Follow-up study: How the risk factors each CAD patient with stenosis of 75% according to the AHA classification has are managed during the three-year period and how such management influences the endpoint are to be analyzed. The chi-square test is used for qualitative data, while the \(t \)-test is used for quantitative data in the case of a comparison between two groups. In the case of comparison among three or more groups such data are subjected to variance analysis, and if there is any significant difference, Scheffe’s post hoc analysis is also to be performed. The \(\chi^2 \) test is used for any change in risk factors, while changes in parameters are to be evaluated by variance analysis and then subjected to Scheffe’s multiple comparison. Relation between the endpoint and the presence (or absence) of any risk factors, such as treatment after cardiac catheterization procedure, medication administered, risk factor parameter, and expenses incurred (in treatment, drugs, etc.) are to be analyzed by multivariate studies based on Cox’s proportional hazard model. Further, multiple regression analysis based on these factors is to be performed in an attempt to construct a linear model to forecast the occurrence of cardiovascular events.

Trend study: The trend in the selection of treatment for CAD patients in Japan for each six-month period is to be investigated and how the difference in the selection of treatment correlates with the endpoint is to be studied. The risk factors for each subject and the changes in parameters are to be studied using the same analytical methods as in the Follow-up Study. Analysis of events is to be performed in the same manner as in the Follow-up Study. In addition, relative risk is to be calculated for every six-month period, and how the occurrence of cardiovascular events is influenced by the presence (or absence) of any of the risk factors, medication administered, and changes in risk factor parameters is to be studied.

FUTURE SCHEDULE

Enrollment began in April 2000 and the initial enrollment of 15,506 cases for the Follow-up Study ended on September 30, 2003. In the Follow-up Study, the patient enrollment procedure was completed by the end of March, 2004 and the data entry period will expire as of the end of September 2004. In April 2005, how risk factors and treatment given to each patient correlate with the recurrence
rate of CAD will be reported based on the Follow-up Study and background fac-
tors of Japanese CAD patients, while how they are treated and the change in the
recurrence rate of short-term cerebrocardiovascular events will be reported based
on the Trend Study.

Subsequently, various subanalyses, including analysis by sex, existence of
concomitant coronary risk factors, treatment following the cardiac catheterization
procedure, and a cost versus benefit study will be performed and the results will
be reported at a later date.

ACKNOWLEDGEMENT

The study has 55 advisors selected from major regional hospitals throughout Japan.
Participating institutions and physicians are shown below:
Department of Cardiology, Hokkaido Cancer Center, Sapporo; Takashi Takenaka
Department of Cardiology, Hakodate Goryokaku Hospital, Hakodate; Hiroshi Oimatsu,
Akita Endo, Hiroyuki Kita, Hisataka Sasao
Department of Cardiology, National Hakodate Hospital, Hakodate; Teisuke Anzai
Department of Cardiology, Shin-Nittetsu Muroran General Hospital, Muroran; Takayuki
Matsuki
Department of Cardiology, Muroran City General Hospital, Muroran; Tetsuro Shoji,
Takeo Adachi, Masatada Fukuoka
Department of Cardiology, Nikko Memorial Hospital, Muroran; Takashi Shogase
Department of Cardiology, Sapporo City Hospital, Sapporo; Noriyoshi Kato
Department of Internal Medicine, Sapporo Cardiology Clinic, Sapporo; Masahiro Tsu-
zuki, Hiroshi Kobayashi
Second Department of Internal Medicine, Sapporo Medical University, Sapporo; Kazuaki
Shimamoto, Kazufumi Tsuchihashi
Department of Cardiovascular Medicine, Hokkaido University Graduate School of Med-
icine, Sapporo; Kazushi Urasawa, Tetsuro Koya, Akira Kitabatake
Department of Cardiovascular Medicine, Hokkaido Cardiovascular Hospital, Sapporo;
Naoki Funayama
Department of Internal Medicine, Asahikawa City Hospital, Asahikawa; Yutaka
Yamada, Yasumi Igarashi, Kunihiko Tateda
Department of Cardiology, Asahikawa City Hospital, Asahikawa; Yoshinao Ishii, Kuni-
hiko Tateda
Department of Cardiology, Asahikawa Kousei Hospital, Asahikawa; Junichi Katoh
Department of 1st Internal Medicine, Asahikawa Medical College, Asahikawa; Kenjiro
Kikuchi, Naoyuki Hasebe
Division of Cardiology, Aomori Prefectural Central Hospital, Aomori; Yasuhiro Fujino
Third Department of Internal Medicine, Hachinohe City Hospital, Hachinohe; Fumitaka
Kikuchi
Second Department of Internal Medicine, Hirosaki University School of Medicine, Hiros-
saki; Ken Okumura, Hiroyuki Hanada
Division of Cardiology, Iwate Prefectural Central Hospital, Morioka; Kenji Tamaki
Department of Internal Medicine, Ibaraki Seinan Medical Center, Ibaraki; Hiroshi Maeda, Yoshihiro Seo
Division of Cardiology, Ibaraki Prefectural Central Hospital, Ibaraki; Shojiro Ishibashi
Department of Cardiology, Mito-Saiseikai General Hospital, Mito; Minoru Murata
Cardiology Division, Omiya Medical Center, Jichi Medical School, Saitama; Muneyasu Saito, Norifumi Kubo
Department of Cardiology, Koshigaya Hospital. Dokkyo University School of Medicine, Saitama; Shigenori Morooka, Hirotoshi Kamishirado
Department of Cardiology, Saitama Medical School, Saitama; Shigeyuki Nishimura, Nobuyuki Komiyama, Osami Kohmoto, Takashi Serizawa
Third Department of Internal Medicine, Saitama Medical Center, Kawagoe ; Nobuo Yoshimoto, Shugo Tanaka, Yoshiaki Maruyama
Division of Cardiology, National Saitama Hospital, Saitama; Masahiro Suzuki
First Department of Internal Medicine, National Defence Medical College, Saitama; Fumitaka Ohsuzu, Toshio Shibuya
Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba; Isssei Komuro, Yoshio Kobayashi, Yutaka Yamamoto, Yoshiaki Masuda
Cardiovascular Center, Chiba-hokusoh Hospital, Nippon Medical School, Chiba; Kyoichi Mizuno, Shunta Sakai, Fumiyuki Ishibashi, Shigenobu Inami, Masamichi Takano
Division of Cardiology, Department of Internal Medicine, Kashiwa Hospital, The Jikei University School of Medicine, Kashiwa; Mitsuyuki Shimizu, Masafumi Kusak
Department of Internal Medicine, Juntendo University Urayasu Hospital, Urayasu; Tatsumi Kanoh, Shigeru Matsuda
Department of Cardiology Center, Toho University Sakura Hospital, Chiba; Hidefumi Ohsawa
Division of Cardiology, Kimitsu Central Hospital, Kisarazu ; Toshiharu Himi, Koichi Sano
Department of Cardiology, Mitsui Memorial Hospital, Tokyo; Kazuhiro Hara
International Medical Center of Japan, Tokyo; Yoshio Yazaki, Nobuharu Akatsuka
Department of Internal Medicine, Teikyo University School of Medicine, Tokyo; Tamio Teramoto
Itabashi Chuo Medical Center, Tokyo; Tsutomu Tamura
Department of Cardiology, Nihon University Surugadai Hospital, Tokyo; Katsuo Kanmatsuse, Ikuyoshi Watanabe, Hirofumi Kawamata
Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo ; Seibu Mochizuki, Satoru Yoshida
Cardiovascular Center, Toranomon Hospital, Tokyo; Tetsu Yamaguchi, Shin-ichi Momomura, Sugao Ishiwhata, Yo Fujimoto
Cardiovascular Institute Hospital, Tokyo; Tadanori Aizawa, Ken Ogasawara
Division of Cardiology, Senpo-Tokyo Takanawa Hospital, Tokyo; Toshiyuki Degawa
Department of Cardiology, Juntendo University School of Medicine, Tokyo; Hiroyuki Daida
1st Department of Internal Medicine, Nippon Medical School, Tokyo ; Teruo Takano, Akihiro Nakagomi, Yoshiki Kusama
Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Yokohama; Ichiro Michishita, Ken Umeda
Department of Cardiology, Hiratsuka City Hospital, Hiratsuka; Takashi Matsubara, Takashi Sakai
Department of Cardiology, Nagano Red Cross Hospital, Nagano; Jiro Yoshioka, Izumi Miyazawa, Shoji Sawaki
Cardiology, Shinonoi General Hospital, Nagano; Hiroyuki Ichinose
1st Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto; Keishi Kubo, Shinichiro Uchikawa
Division of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto; Uichi Ikeda, Hiroshi Tsutsui
Department of Cardiology, Nagaoaka Red Cross Hospital, Nagaoka; Tsuneo Nagai
Department of Cardiology, Tachikawa General Hospital, Nagaoka; Masaaki Okabe
Division of Cardiology, Niigata Prefectural Central Hospital, Niigata; Fumiaki Masani
Department of Internal Medicine, Kido Hospital, Niigata; Takashi Tsuda, Toshio Yamaguchi
Division of Cardiology, Saiseikai Niigata Daini Hospital, Niigata; Yusuke Tamura
Department of Cardiology, Niigata Kobari Hospital, Niigata; Hideaki Otsuka, Yasushi Miyakita, Kotaro Higuchi
Division of Cardiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata; Yoshifusa Aizawa, Yuuichi Nakamura, Taku Matsubara, Tomoyuki Hori
Division of Cardiology, Niigata Prefectural Shibata Hospital, Niigata; Kaoru Suzuki, Eiichi Itoh
Division of Cardiology, Tsubame Rosai Hospital, Niigata; Seiichi Miyajima
Molecular Genetics of Cardiovascular Disorders, Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa; Hiroshi Mabuchi
Department of Internal Medicine, Toyama Red Cross Hospital, Toyama; Yutaka Nitta
Department of Cardiology, Kanazawa Cardiovascular Hospital, Kanazawa; Masanobu Namura
Department of Cardiology, Ishikawa Prefectural Central Hospital, Kanazawa; Honin Kanaya, Bunji Kaku
Department of Cardiology, Kanazawa Medical University, Uchinada; Noboru Takekoshi, Seiyu Kanemitsu
Department of Cardiology, Fukui Cardiovascular Center, Fukui; Sumio Mizuno, Kazuo Ohsato
Department of Internal Medicine, Fukui Prefectural Hospital, Fukui; Susumu Fujino, Takashi Saga
First Department of Internal Medicine, University of Fukui, Fukui; Jong-dae Lee, Hiromasa Shimizu, Hiroyasu Uzui, Akira Nakano
Department of Cardiology, Shizuoka City Shizuoka Hospital, Shizuoka; Akinori Takizawa
Department of Cardiology, Shizuoka General Hospital, Shizuoka; Hirofumi Kambara, Osamu Doi, Satoshi Kaburagi
Department of Cardiology, Shimizu Kosei Hospital, Shizuoka; Sadao Takeda
Department of Cardiology, Hamamatsu Medical Center, Hamamatsu; Chiei Takanaka
Department of Cardiology, Hyogo Brain and Heart Center, Himeji; Teishi Kajiya, Shin-ichiro Yamada, Takatoshi Hayashi
Department of Cardiology, Miki City Hospital, Miki; Kojiro Awano
Division of Cardiology, Tottori Prefectural Central Hospital, Tottori; Yasuyuki Yoshida, Hiroshi Nasu, Hisato Moritani, Akihiro Endo, Masahiko Sakamoto
Department of Cardiology, Tottori Red Cross Hospital, Tottori; Jiro Miyamoto
Department of Cardiovascular Medicine, Tottori University, Faculty of Medicine, Yonago; Chiaki Shigemasa, Ichiro Hisatome, Yoshiaki Inoue
Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry, Okayama; Tohru Ohe, Satoshi Nagase
Department of Cardiology, Kurashiki Central Hospital, Kurashiki; Kazuaki Mitsudo, Kazushige Kadota
Department of Cardiology, Matsue Red Cross Hospital, Matsue; Nobuo Shiode
Division of Cardiology, Shimane Prefectural Central Hospital, Shimane; Tsuyoshi Oda, Yasuaki Wada
Department of Cardiology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima; Shunichi Kaseda
Department of Internal Medicine, Fukuyama Cardiovascular Hospital, Fukuyama; Seiichi Haruta
Department of Cardiology, Tsuchiya General Hospital, Hiroshima; Yasuhiko Hayashi
Division of Cardiology, Tokuyama Central Hospital, Yamaguchi; Hiroshi Ogawa, Takatoshi Wakeyama
Department of Cardiology, Saiseikai Yamaguchi General Hospital, Yamaguchi; Shiro Ono, Kotaro Shiomori
Department of Cardiology, Yamaguchi Red Cross Hospital, Yamaguchi; Kohei Muramatsu
Department of Medical Bioregulation Division of Cardiovascular Medicine, Yamaguchi University School of Medicine, Ube; Masunori Matsuzaki, Takashi Fujii
Department of Cardiology, Matsuyama Red Cross Hospital, Matsuyama; Toshiaki Ashihara, Takashi Nanba, Takaya Fukuyama
Second Department of Internal Medicine, Ehime University School of Medicine, Ehime; Jitsuo Higaki, Yuji Shigematsu, Yuji Haru
Department of Cardiology, Ehime Prefectural Imabari Hospital, Imabari; Hiroshi Matsuoka, Hideo Kawakami, Kazuhisa Nishimura
Department of Cardiology, Kitaishikai Hospital, Ozu; Takumi Sumimoto
Department of Internal Medicine, Yawatahama City General Hospital, Yawatahama; Kohji Takahashi
Department of Internal Medicine, Ehime Prefectural Minamiuwa Hospital, Minamiuwa; Takashi Tsuruoka
Department of Internal Medicine, Uwajima City Hospital, Uwajima, Ehime; Mareomi Hamada
Department of Cardiology, Saiseikai Fukuoka General Hospital, Fukuoka; Yusuke Yamamoto, Masanori Okabe, Koji Todaka, Yutaka Akatuka
Department of Cardiology, Hamanomachi Hospital, Fukuoka; Yuji Maruoka, Hiroshi Ando, Yuuko Funakoshi
REFERENCES

