「医用動画像・生体情報同期記録システム」の紹介

菊地 盤

Introduction of the Medical Video/Biological Information
Synchronous Documentation System: Medical Forensic System™
Iwaho Kikuchi

要 旨
医療に対する社会の評価は著しくなされており、医療訴訟は年々増加している。手術に伴う医療訴訟では、画像などの具体的な手術記録の提出が求められる場合も少なくない。CCDを通じて得られた画像を見ながら行われる内視鏡手術では、手術時の画像記録の保存が重要である。内視鏡手術における客観的な手術記録の保存方法について検討した。KV オリンパス（株）が開発した画像同期記録システムを使用し、術野と外観の画像、麻酔中の心電図、酸素飽和度などのモニターと同期してリムーバブル HDD に記録しランダムアクセス可能なデータとして保存するシステムを開発した。さらに、これらの保存条件を画像の解像度および保存に要するコストの観点から検討したところ、現時点におけるもっともコストパフォーマンスに優れた保存条件は MPEG1、1.5M であることが示された。本システムを運用することにより、内視鏡手術時の情報を客観的に保存することが可能であり、内視鏡手術をはじめとする外科手術の手術記録の保管方法として有用であると思われた。

Key words：手術記録、同期記録、生体情報、腹腔鏡下手術

序 文
開腹手術、腹腔鏡下手術を問わず、外科手術における手術記録の保存は必要不可欠である。また、医療訴訟の增加に伴い、近年、客観的な手術記録の保管が求められるようになった。裁判においては証拠として手術記録の提示が求められ、非常に重要な位置を占めると考えられる。

本邦における医療事故を取り巻く環境は、医療従事者にとって年々厳しくなっている。医療事故に際して、当事者である医師は、民事責任を問われ、行政処分を受けたみならず、刑事責任を追及されることもあり得ない。特に、歴史の浅い手術方法である内視鏡手術において、この傾向は顕著である。

医療訴訟において、これまでは原告である患者側が診療ミスを指摘しなければならなかったが、最近では医療側が的確な診療行為を行っていたことを実証しなければならないような状況にかわりつつある。

一方、制限された技術環境の中で行われる内視鏡手術は開腹手術に比べ高度なテクニックが要求される上に、歴史が浅く、合併症に関する経験の蓄積が少ないため、医療訴訟のリスクが高い。また、CD で映し出されたモニター画像をみながら手術を行う内視鏡手術ではビデオや DVD などで手術所見の録画が可能であり、記録を保管することが常識となっている。このため、内視鏡手術の医療訴訟において、術中のビデオなどの画像情報がないことは、術者を著しく不利な状態におくことになる。

以上より、手術記録を保存し、万一の訴訟から術者を守るためには、術中の様子を客観的にモニターできるシステムが必要であると思われる。

今回、産学協同で新しい手術動画と生体情報を同期、記録できるシステムを開発したので、その経緯について紹介する。
1. 開発の経緯
KS オリンパス（株）が 2 動画と生体情報などのトレンードデータを記録できるシステム MFS-DV を開発した。このシステムは 2 つの画像と心電図、SpO₂や血圧などの生体情報を同期して記録することが可能であり、当初は医療現場における動画記録を目的として開発された。しかしながら、通常の手術画像の記録のみでは、同期記録の特性が生かせなかった為、当教室が本システムの有効活用の検討について協力を依頼された。そこで、本システムを応用、手術の様子を客観的に記録するシステムとして位置づけ、真正性の高い医療情報として保存するための実用的な方法について検討した。

(1) 機器の仕様
MFS-DV のシステムハードウェア仕様について以下に示す。
本体の構成は CPU Pentium4 3.4GHz、メインメモリは 1 GBytes で HDD：800GBytes（RAID 1.2 端流）、映像キャプチャカードを 2 枚搭載する。OS は Windows XP で、キャプチャソフトを用い、2 動画像と生体情報の同期記録が可能である。入力ソースは 2 端流で NTSC SD 映像に対応、バイタルデータは心拍数/SpO₂、非観血血圧等が同時に記録できる。生体情報は、日本光電社製ベッドサイドモニタ BSM-51xx シリーズ、BSM-23xx シリーズ、BSS-98xx シリーズ、またはテレメータ WEP-42xx シリーズ、フィリップス社製セントラルサーバ、オリンパスメディカルシステム社製 MUE-200S に応答可能である。

15インチ TFT タッチパネル（低抵抗方式）で操作可能で、映像品質：映像フォーマットは MPEG2、MPEG1、でビペットレート、フレームレートとも任意設定可能である。

(2) 検討項目
上記のシステムを用い、以下について検討を行った。
1）本システムに録画する画像と生体情報に関する検討
本システムは任意の 2 動画と、複数の生体情報をデジタルデータとして同期記録することが可能である。記録に供する動画と生体情報について検討した。
2）本システムで得られた情報を効率的にストレージする条件
映像品質については任意に設定可能であるが、映像品質と容量は逆相関するため、保存する画像情報の解像度と保存する容量のバランスについて検討した。

2. 結 果
(1) 記録に供する情報の選定
生体情報としては手術時に麻醉器で通常モニタリングしている情報、すなわち心拍数、SpO₂および非観血血圧を選定した。
表1圧縮レベルと容量の関係

<table>
<thead>
<tr>
<th>圧縮レベル</th>
<th>1画像データ量</th>
<th>1時間当たりのデータ量 (2動画+生体情報)</th>
<th>1時間当たりのデータ量 (2動画)</th>
<th>内蔵ハードディスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEG2 15M</td>
<td>6.90G/h</td>
<td>16.6G</td>
<td>13.8G</td>
<td>30.2時間</td>
</tr>
<tr>
<td>MPEG2 8M</td>
<td>3.88G/h</td>
<td>8.8G</td>
<td>7.4G</td>
<td>56.6時間</td>
</tr>
<tr>
<td>MPEG2 6M</td>
<td>2.76G/h</td>
<td>6.6G</td>
<td>5.5G</td>
<td>75.5時間</td>
</tr>
<tr>
<td>MPEG2 4M</td>
<td>1.84G/h</td>
<td>4.4G</td>
<td>3.7G</td>
<td>113.2時間</td>
</tr>
<tr>
<td>MPEG2 2M</td>
<td>0.93G/h</td>
<td>2.2G</td>
<td>1.8G</td>
<td>226.4時間</td>
</tr>
<tr>
<td>MPEG1 1.5M</td>
<td>0.52G/h</td>
<td>1.2G</td>
<td>1.0G</td>
<td>400.6時間</td>
</tr>
</tbody>
</table>

※ 内蔵HD500MB、1日当たりの手術時間を6時間で換算
参考 DVD XPモード:4.7GB/h DVD SPモード:2.4GB/h DVD LPモード:1.2GB/h

(2)記憶装置の容量と解像度のバランス

記録動画の圧縮レベルと容量の関係を表に示す（表1）。現時点では、通常手術時での画像はVHSビデオもしくはDVDに記録されることが一般的であり、従来までのNTSC/PAL相当の品質の画像で十分であると思われる。手術室の術後画像は動きが少ないため、術野画像よりもさらに画像品質が低くても問題ないと思われた。
以上より、記録動画の圧縮レベルと容量の関係を表1に示した。MPEG1 1.5Mbps（解像度352×240、VHS相当）であると考えた。

(3)医療情報記録としての真正性の付加

本システムに収録された情報を編集や改竄ができないものであるという真正性を付加するため、画像情報の中電波時計による時刻表示を記録した。さらに慶応大学のグループにより、インターネットにアクセスした時間を追加し記録付加するタイムスタンプ機能が追加され、さらに真正性を石盤した。

3. 本システムの有用性についての考察

(1)客観的な手術記録の保存

外科手術の記録は必要不可欠であり、手術時の画像は記録としても重要である。なかでも腹腔鏡下手術は手術自体がビデオカメラでの観察下に行われるため、術中画像が動画として記録可能である。画像処理・デジタルビデオ技術の進歩により、従来までのNTSC/PALに比べてより高画質なHD動画記録も可能となっている。しかし、腹腔内ののみの画像では術者・体腔外での手技、手術手順状況などは記録できない。
本システムにおいては、腹腔内の画像のみならず、体腔外との2つの画像と生体情報が同期して記録されることと、さらに電波時計の時刻がリアルタイムに記録されることで、医療情報の真正性を付加した。

(2)本システムの意義

術中の生体情報と手術画像を同期して記録するシステムの報告がある7）。しかし、本システムは生体情報と手術画像に加え、さらにもう1つの動画の記録が可能であり、これらの情報を同時して記録できる。動画による情報は体外の画像として、内視鏡手術がすべて体内で施行される場合には、術者の配慮を中心とした手術室全体の術後画像を記録し、ハンドオフアシストなどの体外法が併用される場合には術者の手元を体外の術野として記録できるような伸縮性のカスタマイズを考慮した。また、本システムでは手記の情報とデジタルデータとしてHDに記録し、ランダムアクセスが可能である。そのため、バイタルデータが断続した時の画像の呼び出しや、その逆に事象のあった手術画像から、その時のバイタルデータや手術室の術後画像の呼び出しもできる。

本システムにおける、記録画像の圧縮レベルはMPEG1.5M（DVD EPモード）からMPEG2 15Mに設定可能であり、設定により、内蔵ハードディスク500Gで、記録時間は約400時間から30時間である。現時点における記憶メモリの容量とコストの観点から画質の解像度を勘案すると最低画質モードでVHS相当であるため、MPEG1.5Mでも十分であると考えられる。このモードでは、1日6時間、週5日の稼働、合計約66日、2ヶ月以上での記録が可能である。
手術時の音声記録に関しては、「監視されている」ことを意識して術者が委縮してしまう可能性を考慮して採用なかった。本システムにおいては手術時の音声記録は技術的には可能であり、その採否に関しては、今後の検討課題としている。

本システムは、手術室入室から退室時までのすべての情報を記録することを目的としたものである。リスクマネジメントを目的とした場合、手術の一部の時間のみの記録では不十分であると思われる。内蔵ハードディスクのみでも、合計66日と長時間の記録が可能であるが、やはり、容量には限界がある。そのため、現時点では定期的にハードディスクに記録されたデータをBlu-ray DISKなどに書き出し、保存・保管することを前提としている。
結語
本システムは記録画像の画像の設定によりHD画像の記録も可能となる。近年のAV機器の進歩は短期間月数であり、今後、より費用で小型かつ大量容量の記憶メモリの開発により、近い将来、さらに高解像度で長時間での保存が可能になると思われる。
さらに、ネットワークにより、病院内・外にサーバーを設置し、保存することも可能であろう。しかしながら、このシステムは術者に記録していることを意識されることなく、存在することが理解される。最終的には患者的手術室入室から、手術開始、終了、退室まで、自動的に一貫して記録を行い、第三者によって保管されるべきである。
本システムを全手術室で系統的に運用することにより、手術室における安全管理の向上が期待される。

謝辞
本システムの構想、開発を行った故武内裕之教授に感謝の意を表します。

文献
2）Leflar RB, Iwata F：Medical Error as Reportable Event, a Tort, as Crime：A Transparstic Comparison, Widener Law Review 12：189, 2005
4）田邁昇：外科医が知っておきたい法律の知識、福島県立大病院事件は何か問題なのか？刑事事件になった場合の病院・医師としての対応、外科治療 94：836～840, 2006
5）古瀬彰：医療の質の保証 ブリストルの遺産 わが国において心臓手術の質が問われた事件、胸部外科 59：933～939, 2006
6）水谷渉：医療事故と刑事裁判について一覧と対策一、日本臨床内科医学会誌 23(2)：191～199, 2008
7）Levine WC, Meyer M, Eqan M et al：Development of a vender agnostic, full disclosure system for capture, display, and storage of operative systems data AMIA Annu Symp Proc, 1006, 2006
9）和田則之、古川俊治、須田康一：内視鏡外科のリスクマネジメント 内視鏡外科におけるデジタルフォレジック、日本内視鏡外科学会雑誌 12：237, 2007

（本稿は2008年6月20日・21日に開催された第10回日本医療マネジメント学会学術総会における発表内容をもとに寄せしたものである。）

ABSTRACT

Introduction of the Medical Video/Biological Information Synchronous Documentation System：Medical Forensic System™
Iwahiro Kikuchi
Department of Obstetrics and Gynecology, Juntendo University School of Medicine

As demonstrated by the recent increase of civil and criminal suit in medical fields, society has come to have negative perceptions about medical treatments. Defendants (doctors/hospitals) in medical suits are often required to submit records including images of processes during surgeries. It is therefore essential to keep images as medical case history in endoscopic surgery based on the charge couple device (CCD). The present study examines an objective storage method for endoscopic surgical records. The image synchronous documentation system developed by KS Olympus (Tokyo, Japan) was used to document the images of a surgery itself as well as an external view in synchronization with biological information including blood pressure, ECG and oxygen saturation under anesthesia. The documented data was then stored on a removable HDD as randomly accessible data. Different storage conditions were comparatively examined in regard to image resolution and cost. It was found that MPEG1 1.5Mbyte/h is currently the best cost-performance storage condition. It was also confirmed that the system could objectively document surgical data. The present system is useful for documenting the information from various types of surgery including endoscopic surgery.

Keywords：surgical documentation, synchronized documentation, biological information, laparoscopic surgery