J-STAGE トップ  >  資料トップ  > 書誌事項

Vol. 44 (2009) No. 4 P 380-386




In one of the accidents that might happen in the nuclear power station, there is a contamination accident caused by radioactive corrosion products during a periodic inspection. It is necessary to presume the skin absorbed dose from the adhesion area and the contamination density to forecast the level of the skin hazard by the adhesion of the radioactive substance. However, the data to forecast the local skin dose when the radioactive substance adhered handily is not maintained. In this paper, the absorbed dose in the skin surface neighborhood contaminated by radioactive corrosion products was calculated, and the relation between the adhesion area and the contamination density and the local absorption dose was derived. And, the approximate equation that forecast the integrated dose was derived from these data. As for the absorbed dose rate in depth 70 μm from the skin surface that became the index of the skin hazard, the contribution rate by 59Fe was the highest within 30 days, and the contribution of 60Co rose most after the 30th after the radioactive substance had adhered when the contamination density the adhesion area was the same. The relation between the initial contamination density and days that required it was graphed to reaching to the threshold by the integrated dose when the threshold dose in which the necrosis of the skin was caused was assumed to be 20 Gy. The absorbed dose commitment can be presumed from measurements of the contamination density by using this graph or the approximate equation.

Copyright © 2009 日本保健物理学会