YIAB-5 KCNE5 Variants Are Novel Modulators of Brugada Syndrome and Idiopathic Ventricular Fibrillation

Seiko Ohno1, Dimitar P Zankov2, Wei-Guang Ding2, Hideki Itoh1, Takeru Makiyama3, Takahiro Doi3, Satoshi Shizuta3, Tetsuhisa Hattori3, Akashi Miyamoto1, Nobu Naiki1, Hiroshi Matsuura2, Minoru Horie3

1Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan, 2Department of Physiology, Shiga University of Medical Science, Otsu, 3Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto

Brugada syndrome (BrS) and idiopathic ventricular fibrillation (IVF) have a higher incidence among males. Among genes coding ion channels, KCNE5 is located in the X chromosome, encodes an auxiliary subunit for K channels and modifies the transient outward current (Ito). In 205 Japanese patients with BrS or IVF, who were negative for SCN5A mutation, we conducted a genetic screen for KCNE5 and identified two novel KCNE5 variants, Y81H in 1 male and 2 female, and D92E-E93X in one male from 4 unrelated families. All probands received ICD implantation. Functional consequences of the KCNE5 variants were determined through biophysical assay using co-transfection with KCND3 or KCNQ1. In the experiments with KCND3, Ito was significantly increased for both of the KCNE5 variants compared to WT. In contrast, there were no significant changes in KCNQ1 + KCNE5 WT and the two variants. With the simulation model, both variants demonstrated "notch and dome" or "loss of dome" patterns. In conclusion, novel KCNE5 variants increased Ito and appeared to cause ventricular fibrillation. Screening for KCNE5 is relevant for BrS or IVF.

Keywords: KCNE5, IVF, Brugada syndrome