ろ紙電気泳動法による法定食用水溶性タール色素の
同定法と粉末ジュースの試験成績について

福田照夫，宮河君江，呂 清美，石橋無味雄，金 景休
（昭和薬科大学*3）

Studies on Identification of Water soluble Coal-tar Food Colours
legally permitted in Japan and the Results obtained in
the Case of powdered Juices on the Market*1
Teruo Fukuda, Kimie Miyakawa, Kiyomi Ro,
Mumio Ishibashi, and Keikyū Kin
(Showa Pharmaceutical College*2)

A simple and rapid method to test water soluble coal-tar food colours legally permitted
in Japan was studied using alumina column chromatography and paper electrophoresis and
the following results were obtained.

1) As the buffer solution for the paper electrophoresis 5N acetic acid was most advantage-
ous, because of inconsiderable tailing and minimized variation of relative mobilities to
flavianic acid.
2) In order to identify the dyes which were difficult to identify under above mentioned
condition or to increase the certainty of the identification of the other dyes, 1% borax solution
was used in place of 5N acetic acid as buffer solution to give good results.
3) Mobilities of dyes in paper electrophoresis were effected with ambient temperature, but
the relative mobilities to flavianic acid did not vary.
4) The application of this method to the dyes contained in powdered juices on the market
gave satisfactory results, and this method could be applied to test the sample in which five
colours were mixed.
5) Isolation of the dyes from the powdered juice was carried out by the alumina column
chromatographic method under the mild condition, so this will be applicable to the unstable
substances.

(Received June 4, 1965)

まえがき
現在行なわれている水溶性食用 タール色 色素試験法で
は，食品よりの色素分離法として毛染染色法が用いられ
ているが17-20，やや繁雑でありまた加熱を要する。また
簡単な同定法としてはペーパークロマトグラフによる
Rf 値17-20 またはフラビアン酸に対する移動比による
法21があるが，比較的長時間を要する。そこでもっと簡
便に，短時間に試験ができる方法について検討したとこ
ろ，同定法としてはろ紙電気泳動法を用いフラビアン酸
に対する移動比（95％信頼限界値）による法を，食品よ
りの分離法としては，今回は食品として粉末ジュースの
みに限ったが，活性アルミナをつめたカラムに試料液を
通じ，吸着・脱離させる簡単な方法により，ほぼ満足す
べき結果をえた。なお本法を適用した市販粉末ジュース
の試験成績も合わせて報告する。

実験方法
1. ろ紙電気泳動操作法
1）使用器具：東洋ろ紙 K.K.製 Toyo C号
2）使用ろ紙：東洋ろ紙 No. 50 を Fig. 1 に示すよ
うに，タテ16cm，ヨコ37cmに切り，両端より6cmの
所にろ紙支持枠の止め具のくる紙をひく。原紙として一

*1 第20回日本薬学大会（1965）で要旨を発表。
*2 東京都世田谷区豊川町3の577；Tsurumaki-cho, Setagaya-ku, Tokyo.
端より9cmの所に線をひいて2cm間隔で点をうっておき、ついて電解液に浸すところまでの線として両端より3.5cmの所に線をひく。なお原線より10cmの所にも線をひいておく。

3) 使用純色素濃度: 0.1％

4) 混合条件 電解液: 5N酢酸または1％ホウ砂溶液 電圧: 20V/cm 混合前電解時間: 15分間 混合時間: フラビアン酸の泳動距離が10cmに達するまで (5N酢酸の場合約2時間、1％ホウ砂溶液の場合約1時間)

5) 操作法 2)に従って作ったろ紙をろ紙支持枠のとりつけ、原線のある側を陰極 (法定用水溶性タール色素はすべてanionic dyeであるため)、他を陽極側とし、両端より3.5cmの線まで電解液に浸し、600V（すなわち20V/cmの定電圧で、まず15分間放電する。その後原線の中央にフラビアン酸を、その両側に2cm間隔で純色素または椟液を6ヶ所スポットする。このようにして600V (20V/cm)の定電圧で、フラビアン酸が原線より10cmの線に達するまで泳動する。泳動終了後ろ紙を乾燥し、色素帯点の中央と原線との距離をそれぞれの色素の泳動距離とし、これフラビアン酸の泳動距離との比をフラビアン酸に対する泳動比 (RMp) とする。

すなわち \[\text{RMp} = \frac{\text{色素の泳動距離}}{\text{フラビアン酸の泳動距離}} \]

2. 粉末ジュースよりの色素分離法 (Fig.2参照)

Fig.2に示すようなカラム管の底部にガーゼをつめ、活性アルミナ（和光純薬工業 K.K.製）を40mmの層につめる。ついて吸引しつつ蒸溜水4mlを通じ、も密にする。さらに0.5％酢酸4mlを吸引しつつ通じ酸性として、つぎの3.の項に記す方法に従って調製した粉末ジュース溶液を4ml吸引しつつ通じる。このとき粉末ジュース中の色素が活性アルミナに吸着されるので、これを毎回4mlずつ蒸溜水で10回吸引しつつ洗水する。水洗が終了後0.5％アンモニア水で吸着された色素を溶出させる。この際は吸引は行わず自然流下により溶出させる（約30分間要する）。カラムの下端から溶出した色素溶液を水浴上で渦巻きをしながら電気泳動法の検液とする。

3. 粉末ジュース溶液の作り方

1) 発泡剤を含まない粉末ジュース1gをとり、蒸溜水15mlにとかしてろ過し、ろ液を粉末ジュース溶液としてカラム管に通じる。

2) 発泡剤を含む粉末ジュース1gをとり、蒸溜水14mlと未発泡1mlの溶液にとかし、必要であればろ過し、この溶液を加水分解を粉末ジュース溶液としてカラム管に通じる。

実験結果

1. 5N酢酸を電解液としてした場合の法定用水溶性タール色素のフラビアン酸に対する泳動比 (RMp) の信頼度95％の信頼限界

各色素についての泳動比を5回ずつ測定して算出したフラビアン酸に対する泳動比の信頼度95％の信頼限界値は、Table 1のようであった。

この表から明らかにように、食用赤色4号と同101号；食用赤色3号と同103号；食用緑色2号、同3号と食用青色1号の3群の各色素間の判別は、色およびRMp値の近似により困難であるが、他の17種の色素は色およびRMp値の明らかに差により判別可能であり、また比較的小さいので容易に同定も容易である。前記判別困難な3群7種の色素を判別、同定するために電解液として5N酢酸の代わりにつきの1％ホウ砂溶液を用いる方法を検討した。

2. 1％ホウ砂溶液を電解液としてした場合の法定用水溶性タール色素のフラビアン酸に対する泳動比 (RMp) の信頼度95％の信頼限界

前記5N酢酸の場合と同様に各色素についての5回
Table I Confidence Limit of Relative Mobilities of Dyes in the case of 5N Acetic Acid as the Electrolyte \((n=5, \alpha=0.05)\)

<table>
<thead>
<tr>
<th>Names of Dyes</th>
<th>Confidence Limit of RMf</th>
<th>Names of Dyes</th>
<th>Confidence Limit of RMf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Red No. 1</td>
<td>0.787≤RMf≤0.828</td>
<td>Food Orange No.1</td>
<td>0.610≤RMf≤0.641</td>
</tr>
<tr>
<td>Food Red No. 2</td>
<td>1.077</td>
<td>Food Yellow No.1</td>
<td>0.988</td>
</tr>
<tr>
<td>Food Red No. 3</td>
<td>0.152</td>
<td>Food Yellow No.4</td>
<td>1.146</td>
</tr>
<tr>
<td>Food Red No. 4</td>
<td>0.888</td>
<td>Food Yellow No.5</td>
<td>1.094</td>
</tr>
<tr>
<td>Food Red No.101</td>
<td>0.889</td>
<td>Food Green No.1</td>
<td>0.646</td>
</tr>
<tr>
<td>Food Red No.102</td>
<td>1.210</td>
<td>Food Green No.2</td>
<td>0.961</td>
</tr>
<tr>
<td>Food Red No.103</td>
<td>0.188</td>
<td>Food Green No.3</td>
<td>0.970</td>
</tr>
<tr>
<td>Food Red No.104</td>
<td>0.05</td>
<td>Food Blue No.1</td>
<td>0.985</td>
</tr>
<tr>
<td>Food Red No.105</td>
<td>0</td>
<td>Food Blue No.2</td>
<td>0.874</td>
</tr>
<tr>
<td>Food Red No.106</td>
<td>0.708</td>
<td>Food Violet No.1</td>
<td>0.623</td>
</tr>
</tbody>
</table>

Table II Confidence Limit of Relative Mobilities of Dyes to Flavanic Acid with 1\% Borax as the Electrolyte \((n=5, \alpha=0.05)\)

<table>
<thead>
<tr>
<th>Dyes</th>
<th>Confidence Limit of RMf</th>
<th>Dyes</th>
<th>Confidence Limit of RMf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Red No. 1</td>
<td>0.208≤RMf≤0.279</td>
<td>Food Orange No.1</td>
<td>0.313≤RMf≤0.360</td>
</tr>
<tr>
<td>Food Red No. 2</td>
<td>0.653</td>
<td>Food Yellow No.1</td>
<td>0.980</td>
</tr>
<tr>
<td>Food Red No. 3</td>
<td>0.083</td>
<td>Food Yellow No.4</td>
<td>1.036</td>
</tr>
<tr>
<td>Food Red No. 4</td>
<td>0.556</td>
<td>Food Yellow No.5</td>
<td>0.731</td>
</tr>
<tr>
<td>Food Red No.101</td>
<td>0.339</td>
<td>Food Green No.1</td>
<td>fade</td>
</tr>
<tr>
<td>Food Red No.102</td>
<td>1.018</td>
<td>Food Green No.2</td>
<td>fade</td>
</tr>
<tr>
<td>Food Red No.103</td>
<td>0.317</td>
<td>Food Green No.3</td>
<td>0.970≤RMf≤1.078</td>
</tr>
<tr>
<td>Food Red No.104</td>
<td>0.219</td>
<td>Food Blue No.1</td>
<td>0.803</td>
</tr>
<tr>
<td>Food Red No.105</td>
<td>0.400</td>
<td>Food Blue No.2</td>
<td>0.522</td>
</tr>
<tr>
<td>Food Red No.106</td>
<td>0.474</td>
<td>Food Violet No.1</td>
<td>0.225</td>
</tr>
</tbody>
</table>

ずつと泳動値より算出したフラビアン酸に対する移動比の信頼度95%の信頼限界値はTable II のようであっ
た。

これから明らかのように、前記5N酢酸を電解液とし
た場合にRMf值の近似のため判別の困難であった3群
7種の色素、すなわち食用赤色4号と同101号；食用赤
色3号と同103号；食用緑色2号、同3号と食用青色1
号の各群中での各色素間の判別はRMf値の明らかな差
により容易となる。なおこのうち食用緑色2号は色の消
失することにより判定する。また5N酢酸を電解液とし
た場合に泳動しなかった食用赤色104号、泳動するが
極めて動きの少なかった食用赤色105号の両者も泳動距
離が大きくなり、かつ両者間のRMf値の差も明瞭であ
るのので判定がより容易となる。

3. 本法を適用した市販粉末ジュースの色素試験成績

入手することのでき市販粉末ジュース56種（オレン
ジは多種類出まわっているなので20種。他は少ないので
グレープ5種、ストロベリー4種、メロン2種、パイント
5種）を本法に従い試験したところ、Table III に示す
ような結果が得られた。

すなわち、オレンジでは食用黄色5号のみの単一色素
による着色の場合が圧倒的に多く、試験例数20例のうち
14例もあった。他に上記食用黄色5号に同4号の加
わった2種混合の場合が4例、さらにこれらに食用赤色
106号の加わった3種混合の場合が2例あった。

グレープでは、3種または5種の混合色素による着色
が行なわれており、試験例数5例のうち、食用黄色5
号、食用赤色2号と食用青色1号の3種混合の場合が最
も多く3例、他は前記3種の色素のうち食用黄色5号を
同4号に変えたもの1例、また最初の3種の色素にさら
に食用赤色102号および食用青色4号が加わった実に5
種の色素から成っているものが1件あった。

ストロベリーでは、試験例数4例のうち、食用赤色2
号と同102号の2種混合の場合が2件、前記2種混合色

NII-Electronic Library Service
Table III Dyes detected in Powdered Juices on the Market

<table>
<thead>
<tr>
<th>Juices</th>
<th>The number of samples</th>
<th>Names of Detected Dyes</th>
<th>The number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>20</td>
<td>Food Yellow No.5</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Yellow No.4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Yellow No.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Yellow No.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Yellow No.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Red No.106</td>
<td>2</td>
</tr>
<tr>
<td>Grape</td>
<td>5</td>
<td>Food Yellow No.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Yellow No.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Yellow No.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Red No.102</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Red No.102</td>
<td></td>
</tr>
<tr>
<td>Strawberry</td>
<td>4</td>
<td>Food Red No.2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Red No.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Yellow No.5</td>
<td></td>
</tr>
<tr>
<td>Meion</td>
<td>2</td>
<td>Food Yellow No.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Red No.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Blue No.1</td>
<td></td>
</tr>
<tr>
<td>Pineapple</td>
<td>5</td>
<td>Food Yellow No.4</td>
<td>5</td>
</tr>
</tbody>
</table>

紹のうち、食用赤色102号が食用黄色5号と入れかわった2種混合のもの2件であった。

メロンでは、2例しか入手できなかったが、食用黄色4号と食用青色2号の2種混合のものと、前記のうち食用青色2号が同1号と入れかわった2種混合のものたがあった。

パイナップルでは、入手したものの5例とすべて食用黄色4号のみの単独色素による着色であった。

以上を総観すると、単独色素による着色はオレンジの1部、パイナップルの全部にみられ、他は2種～5種の混合色素による着色であることがわかった。とくにグレープでは混合色素の数が多く、少なくとも3種、多いときは実に5種混合の場合もあった。

なお今回試験した市販粉末ジュース等には、法定外色素による着色のものはみとめられなかった。

考察

食品中のタール色素の分離にアルミナカラムを用いる方法は、すでにP.L.Kirk4およびY.Yanukaら5によって試みられている。Y.Yanukaら6は酸性アルミナ、塩基性アルミナを用いるカラムクロマトグラフィーにより食品より分離（Isolation）した色素をさらに個々の単独色素にまで分離（Separation）を行なっているため、やや複雑となっている。しかし個々の色素への分離および同定（Identification）はヘビークロマトグラフィーを用いるP.L.Kirk4の報告、または紙電気泳動法を用いるわれわれの場合には、アルミナカラムにより各色素個々にまで分離する必要はなく、つぎの操作での同定を困難にする食品中の夾雑物を除ければ十分であり、食品よりの分離色素の混合のままヘビークロマトグラフィー4）、または紙電気泳動法により個々の色素への分離および同定を行なえない場合は、あきらめてアルミナの複雑な処理などの必要もなく、操作は極めて簡単となる。

P.L.Kirk6は食品中の色素をアルミナカラムに吸着させるとときにアルミナカラムに最初通じる溶媒は塩酸（1+9）を、吸着色素のアルミナよりの溶出にはアンモニア水（1+9）を用いており、またカラム管も20×300mmのものを用いている。われわれもいろいろ検討した結果、食品として粉末ジュースのみ限る場合は、実験方法に記したように、カラムをもっと小型化し、酸も0.5％酢酸を、アンモニア水も0.5％とし、より低濃度、より短時間の条件でも微量の試料をとりあつかうことがわかった。

個々の色素への分離および同定における紙電気泳動法（低圧）を用いる方法は、森ら7およびW.J.Criddle7によっても試みられているが、W.J.Criddle8は英国の法定食用タール色素について行なったものであり、かつ同定沢渡値で行なっている。沢渡値の大小の条件により影響されやすく、とくに温度によって著しく沢渡値の変動がみられるので、四字を通じて同一の沢渡値を同定に用いるわけにはゆかない。また森ら7の報告は各種法定食用水溶性タール色素の分離、同定を主目的としたものではなく、はるか電気泳動法における沢渡値におよぼす諸条件の検討のために、色素を使用したものである。その論文中に電解液の1つとして5N酢酸があげられているが、われわれも電解液を様々試み、5N酢酸がTailinすも少なく、Rf値の変動も少ない点でもっとも適していることを認めた。ただ実験結果の項でも述べたように、数種
の色素は RM\textsubscript{F} 値の近接のため判別の困難なものがあった。これらを判別するための電解液としては 1％ホウ砂溶液がもっとも適している。しかしこの場合はおそらく tailing があり，かつ RM\textsubscript{F} 値のばらつきも Table II および Fig. 4 に示すようにやや大きく，5N 酰酸の場合よりやや劣るが，5N 酢酸で判別できなかった色素群を判別するには十分である。なおその他の色素の場合は電解液として 1％ホウ砂溶液を用いる方法も合わせて行なえば，その判定に対しより確実性を高めることができる。

硝酸電気泳動法の泳動時間（フランシアン酸が 10cm 移動する時間）は温度により影響をうけ，低温で短く，高温で短かくなるが，本報で算出した RM\textsubscript{F} 値には四を通じて変動がみとめられなかった。

なお判定用水溶性色素はすべて anionic dye であることより，硝酸電気泳動法によるときはすべて陽極側に泳動するはずである。もし陰極側へ移動する色素があればそれだけで法定外色素であると直ちに判断できる。

結 論

1. 粉末ジュースよりの色素分離には，本報に示したようなカラム法により 0.5 ～1g の試料で十分行なえる。

2. 色素同定は硝酸電気泳動法を行なうときは，まず 5N 酢酸を電解液として用いると， tailing が少なく，かつフランシアン酸に対する泳動比（RM\textsubscript{F}）の変動も小さくて著しい。これにより判別困難なもの，またさらに判定の確実性を高めるためには，1％ホウ砂を電解液として用いると良い結果を得る。

3. 本硝酸電気泳動法における泳動時間（フランシアン酸が 10cm 移動する時間）は温度により影響をうけ，高温で短く，低温で長くなるが，RM\textsubscript{F} 値は四を通じて変動はみられなかった。

4. 本法を市販粉末ジュースに適用したところ良好結果を得た。なお今回の試料 36 例中には法定外色素はみとめられなかった。また本法を用いた場合が 1 例あったが，この場合も個々の色素を判定可能であった。

結論に臨み，本研究に協力された昭和薬科大学学生，松田善人，坂巻史郎，佐々木孝一，沼野恭子の諸君に感謝する。

文 献

1) 日本薬学会編： "衛生試験法注解" p.109 （1956～7），金原出版 K.K.
2) 厚生省編纂： "衛生検査指針III，食品衛生検査指針（II）" （1963），日本公害衛生学会
3) 半崎正夫編： "衛生化学実験書" p.138，（1959），広川書店
6) 森五彦，木村謙男：薬誌，74, 179 (1954).