On Metabolism of Bromvalerylurea. I.
Detection of 2-({2-Amino-2-carboxy-ethylthio})-3-methyl-butyrylurea from Rabbit Urine

Hideo Isono³ and Hiroshi Kozuka^{2a}
National Research Institute of Police Science^{2d}

(Received October 7, 1974)

It is well known that 3-methylbutyrylurea is one of the metabolites of α-bromoisovalerylurea (bromvalerylurea), and the present experiment was carried out in order to find other metabolites of this hypnotic. After the administration of bromovalerylurea to a rabbit, the urine was collected daily and passed through an anion-exchange resin column. As a result of thin-layer chromatography of the fractions eluted with dil acetic acid, a new Ninhydrin-positive spot was detected much more clearly in the first 24-hr urine than in any other excreted urine. From the first 24-hr urine, this substance was obtained as a pure crystalline compound. Mass spectra, infrared spectra, and other chemical analyses suggested that this Ninhydrin-positive spot is a cysteine derivative of bromvalerylurea. Finally, this compound was determined as 2-({2-amino-2-carboxyethylthio})-3-methylbutyrylurea by comparison with a synthetic compound.

結言

プロムワレリル尿素は、我国では今なお代表的な催眠剤として、あるいは鎮静剤として複合製剤に混合し、広く使用されている。

しかし、この薬剤の展開されていると同時に、各種中毒事故が続発することも多く、この薬剤の定性^{5a}・定量^{6a}はもとより、中毒原因の解明の立場、あるいは解毒処置の立場からもこの薬剤の代謝機構の解明が重要である。

現在確認されているこの薬剤の代謝物に関しては、これを家禽に経口投与して得た排泄尿の、酸性水溶性抽出物から3-methyl-butyrylurea⁴⁻¹²が確認されている。しかしこの代謝物の収量は投与量に比して非常に少なく、未だ代謝機構のなかで不明な点が残されている。

我々は先に¹⁴C標識プロムワレリル尿素（1-¹⁴C-isovaleric acidから合成）を家禽に経口投与して行っ
た予備実験により次の結果を得た。すなわち，①投与量の大部分は，投与後24時間前に排泄され，以後，2～3日後にわたって僅かずつ排泄される。②排泄尿の塩酸酸性エーテル抽出物中には投与量の10％程度しか移行せず，大部分は抽出されずに水層に止まる。しかも，③抽出物中には未変化体のプロモワレリル尿素が痕跡程度であった。以上の知見からさらに既知代謝物である3-methylbutyrylureaの排泄量を合せて考察すると，これ以外にも何らかの変化体のプロモワレリル尿素が痕跡程度であると考えられる。一方，水層からの代謝物の検出については，プロモワレリル尿素を陽性とし，尿素からS-(iso-propyl-carboxymethyl)-L-cysteineを確認した報告がある。今回は，このような水溶性分画法中の代謝物についてさらに検討を加えるため，プロモワレリル尿素を陽性とし，尿素からL-cysteineを検出した結果，新たに2-(2-amino-no-2-carboxy-ethylthio)-3-methylbutyrylurea（プロモワレリル尿素にシスティンが結合した意味でBCと略称する）を結晶として単離し，合成品と比較することにより同定・確認することことができた。実験

1. 試薬 ①培地塩基性イオン交換樹脂：アンバーライト CG-400，Cl型，100～200メッシュ。②カラム用シリカゲル：メルク社製，100～200メッシュ。③プロモワレリル尿素（BCと略称する）：局所効，ホエータール液法から再結晶，mp 156℃。④ニヒドリン試薬：0.1％ニヒドリンのn-プタノール溶液（水酸化2％含有）。⑤混和溶媒A：n-プタノール-水酸化-水（8：1：2v/v/v）。

2. 装置 質量分析器：日本電子製，JMS-OISG，高分解能（乾燥前）。

3. 試料の調製 メノウ乳鉢を用いてアラビアゴム末数mgを少量の水とよく練りつぶし，この中にBVIを少量ずつ加えて，よく練り合わせてペースト状にす。これを数mlの水によく懸濁し，その全量を家兎（5，約3.5kg）に胃ゾンデを用いて経口投与した。投与後の各24時間の排泄尿（平均300ml，pH約8.5）を直ちに東洋ろ紙No.2を用いてろ過し，その全量を1回分の分析用試料ととした。

4. 家兎尿からのBCの分離 新鮮な試料尿（約300ml）をpH8～9の液性でアンバーライト CG 400（OH型）20％のカラム（直径2.7cm）に流し，流出液が中性になるまでカラムを水洗する（約300～400ml）。ついて10％塩酸50mlを加え，直ちに管口部に，二連球を付したゴム栓をはめ，軽く圧力をかけてカラムの液を防ぐながら溶出を行ない，さらに10％塩酸50mlを加え，常圧で溶出を続ける（約5ml/分）。溶出液はいずれも20mlずつ分画し，各分画液を減圧で濃縮した後，それぞれ薄層クロマトグラフィー（展開溶媒：混合溶媒A，発色剤：ニヒドリン試薬）を行ない，BCの有無を検する。BCはRf値0.4～0.5に赤紫色のスポットを示す。BC含有分画液を集め，溶媒を減圧で留去した後，残留物を混合溶媒A5～10mlに加温して溶解させ，可溶物と不溶物とに分離する。

ここで得られた溶出を58のシリカゲルを用いて製したカラム（直径2cm）に流し，混合溶媒A50mlで溶出を行なう。溶出液はいずれも5mlずつ分画し，各々減圧濃縮した後，BCを先と同様に薄層クロマトグラフィーで検出する。BC含有分画液を集め，溶媒を減圧で留去する。この蒸留残留物を水10mlにとかし，ロータリー蒸発器を用いて，50～60℃，常圧で1時間回転し，酢酸エチル20mlで抽出を行う。有機層を留去ビペットに用いて除去する。この抽出操作を数回繰返す。

この水溶液の混和溶媒Aに不溶性の物質を加えて減圧濃縮し，得られた粘稠性物質を100～500mlの三角フラスコの壁面に広く塗布し，50～60℃の水浴上で放置する。褐色粘稠液が次第に底部に溜るに従って，帯黄色の不溶性物質が壁面に残る。この粘稠液をビペットで採取し，再び別のフラスコの壁面に広く塗布する。以上の操作を繰返して不溶性物質を集める。各壁上の不溶性物質は，総計約100mlの水を用いて溶出する。一つのフラスコに集める。これを加熱して透明液とし，活性炭（200メッシュ以上）約20mgを加えて加熱し，沸騰を終えたらろ過する。ろ液が無色透明になるまで同操作を繰返す。ろ液を減圧濃縮すると粗結晶が得られる。さらに，これを少量のn-プタノールを含んだ水に加熱して溶解し，室温で放置して再結晶を繰返し，微細な針状結晶を得る。

5. BCの合成 28％アンモニア水0.5mlにL-スチグマ酯酸塩60mgを溶解させ，この中にエタノール15mlに溶解したBV 300mgを加えてよく混合する。この際，白濁を生じたたらエタノールを少量滴加して透明な溶液とし，60～80℃の水浴上で，開口試験で加温する。加温中は時々液性を調べ，必要があればアンモニア

13) 孤崎 宽，常野秀夫，原子力平和利用研究成果報告書，第5集，p. 355（1965）。
14) K. Haruna, J. Biochem., 49, 388 (1961)。

NII-Electronic Library Service
水およびナタールを滴下して常時アルカリ性に、また
ナタールが極度に減少量を増大するように保つ。20〜50分経過
すると自衛が生じてくるが、さらに加温を続けると結
状の沈殿物が現われる。この結状沈殿物は十分生じた
加温を止め、冷後、ガラスフィルターを用いてろ過す
る。フィルター上の残滓は、少量の水およびエタノール
で順次洗浄する。ここで得られた粗結晶を水より再結晶
する。

収率：50〜60 %、微細な針状結晶、分解温度：208〜
210℃（褐色）、パイロピトタン反応は陰性、ニヒド
リン試薬で赤紫色、Sの定性試験は陽性である。

ここに得られた標品のマススペクトルをFig. 4に示
す。予想したM+ m/e 263は見出せず、次に記
すような各フラグメントピークが認められた。M から
CONHCONH2 部分が脱離したm/e 176、M からMc
Lafferty 転移により[ ΝΗ3(CO)NH2 + CH2=CH2+CH2=
CH2] が脱離したm/e 161、M から[NH3(CO)NH2+H2O+CO2] が脱離したm/e 159、M から[OH(NH3+CO2)NH2+H2O]、CH2=CH-CH2+NH3 およびNH3 が脱離したm/e 144、M からCH2=CH-CH2+CH2=CH-CH2+CH2+CH2+CH2)COOH 部分 が脱離したm/e 143、M からCH2=CH-CH2+CH2=CH(CO2)NH2 部分] が脱離したm/e 134、M から[O-C=CH(CO2)NH2 部分] が脱離したm/e 133、M から
NH3(CO)NH2+H2O+CO2] が脱離したm/e 117等。これらのフラグメントイオンから、合成
標品がBC の構造を有していることを示すものと考えら
れる。

6. BC のエチルエステルの合成 BC 約50 gをミ
クロ試験管に取り、12ml酸酸10μlを加えて溶解後、エ
タノール100μlを加える。これを60〜80℃の水浴上にの
せ、管の底面を数時間加熱し、内容液を濃縮する。この
濃縮物について直接マススペクトル（Fig. 6）を測定すると

BC のエステル体にはM+ m/e 291が明瞭に出現した。
また、このエステル体の構造を特徴的に示唆する下記の
一連のフラグメントイオンが認められた。すなわち、M から
NH3 が脱離したm/e 274、M からMcLafferty 転
移によりCH2=CH-CH2 が脱離したm/e 249、M から
NH3 およびC2H2) が脱離したm/e 245、M からNH3=
CO(NH2)・NH2 あるいは[O-C=CH(CO2)NH2] が脱離
したm/e 231等。特にm/e 218はM+ からエトキシカル
ポニル C002H2の脱離によるもので、アミノ酸のエ
チルエステルに共通して出現するフラグメントイオンで
ある。5) m/e 102はエステルピニール NH2CHOCOC2H5
で、フェニルアラニンのようなC6H5NH2に対し近似するが、
一般には弱い。またm/e 74はエチルピニール NH2CHOCOC2H5
からMcLafferty 転移によりCH2=CH2が脱離したフラ
グメントイオンで、エステルピニールに伴って出現する。
3) m/e 204はM+ からCONHCONH2が脱離したフラ
グメントイオンで、N末端遊離の酸ウレアで共通して出現
した。

以上より、合成標品のエチルエステル化反応で生成し
たものは、BC のカルボキシル基がエチルエステル化さ
れたものであり、合成標品は2-(2-amino-2-carboxy-ethylthio)-3-methyl-butyrylurea であることが確認された。

結果

1) 新ニヒドリン陽性物質の検出

BV の水溶性代謝物を検索する目的で、先ずBV を家
児に経口投与の前後の尿（プランク尿）および投与後の
尿を減圧蒸発し、この濃縮物について、直接ビボ東
クログラフィーを試みた。各種展開溶媒、発色試薬を用い
て検討した結果、家児尿中の種々の成分が検出するた
め、クロマトグラムは大きく乱され、両者の差異を見ると
ことは困難であった。

次に、これら主な変更物を除去する目的で陽・陰イオ
ン交換樹脂、シリカゲル、セファデックス等を用いて検
討した。その結果、尿を陰イオン交換樹脂に通し、その
亜鉛酸鉄溶液について薄層クロマトグラフィーを行ない、
ニヒドリンを残存したクロマトグラムには両者の間で
顕著な差異が認められた。さらに、このニヒド
リン陽性物質を単離し、その構造決定を行うことを目
的として分離条件を検討した。

2) ニヒドリン陽性物質の尿への混入について

雄家児（約3.5Kg）にBV 18を経口投与し、投与後、
7日間における各24時間尿およびプランク尿について、
実験8に従って分析を行なった。その結果、投与後1日目
の24時間尿からは、プランク尿と比べて極めて強いニ
ヒドリン陽性スポットが検出された。2日目の尿はプラ
ンク尿よりもやや強い当該スポットが認められたが、1日
目の尿に比して極めて弱かった。3日目以後の尿につい
てはプランク尿はほとんど異常が認められなかった。
一方、このニヒドリン陽性物質が、尿中に検出され

15）北原案男、佐々木慎一、村田一郎、 "有機化学における物理的方法 6巻、マススペクトルの見方，" 共立出版、
東京、1965、pp. 101-110.
た未変化体のBVから、分離操作過程で生成する可能性を調べたため、乾燥後としBV 18を家兔の排泄尿（pH 9）500 mlに混ぜて、50-60℃で加温して溶解後、室温で数日間放置した。これを試料として実験4の分離・検出方法を試みた結果、このニンヒドリン陽性物質は確認されず従って、この物質は代謝物であると思われた。
また、この物質の排泄は家兔の雌・雄の間に顕著な差異を認めることはできなかった。

3）ニンヒドリン陽性物質の単離

以上の実験から、このニンヒドリン陽性物質は投与後1日目の24時間尿に大部分排泄されるため、投与後1日目の尿を対象にして、この物質の分離を行なった。実験4の分離操作を行なった結果、BV 18を経口投与した家兎尿から最終的に未変の微細な針状結晶約3 mgを得ることができた。

4）ニンヒドリン陽性物質の化学構造

ここで得られたニンヒドリン陽性物質は酢酸エチル、エーテル、クロロホルム等の有機溶媒に不溶。28% アンモニア水、水酸酸、メタノール、エタノール、α-プタノールに難溶。また、常温では水に難溶であるが、過量の熱水に可溶、塩酸酸性水で水に易溶であった。混合溶媒Aを用いたシリカゲル薄層クロマトグラフィーではRf値0.45を示し、Sの定性反応は陽性、パイルシュタイン反応は陰性であった。

また、この物質のミクロ鉱剤法による赤外吸収スペクトルをFig. 1に示す。1680 cm⁻¹に-CO-結合に基づくC=Oの伸縮振動が現われており、また1600 cm⁻¹附近に、アミノ酸のNH₂の変角振動およびCO₂の伸縮振動に起因すると考えられる吸収がみられた。さらに、尿素のN末端遊離の極性振動のテクスロを共有して強く現われる1100 cm⁻¹付近の吸収として、1095および950 cm⁻¹の吸収がみられた。

以上よりこの物質はイオウを有するニンヒドリン陽性化合物であり、有機溶媒に難溶性。しかし赤外吸収スペクトルでは酸アミドの結合を示唆しているところから、物質はBVとシスティンが、それぞれBr部とSH部で結合した化合物であると推定し、BVのシスティン誘導体を合成し、物試したところ合成標品の溶解性、赤外吸収スペクトル（Fig. 2）は、尿から単離したもの（Fig. 1）と全く一致した。

さらに、この物質のマススペクトルを測定した結果をFig. 3 に示すように、これから期待した親イオン m/e 263 は出現しなかったが、合成標品のそれ（Fig. 4）と全く一致した。

また、BVを家兎に投与し、その尿から単離されたニ
Fig. 5. Mass Spectrum of Ethylester of Isolated BC from Rabbit Urine Administered with α-Bromoisonovalerylurea
BC: 2-(2-amino-2-carboxy-ethylthio)-3-methyl-butyrylurea

Fig. 6. Mass Spectrum of Ethylester of Synthesized BC
BC: 2-(2-amino-2-carboxy-ethylthio)-3-methyl-butyrylurea

ソビドリン陽性の結晶についても、実験6に基づき、エチルエステル化を行った。このもののマススペクトルをFig. 5に示すように、M⁺ m/e 291 が明確に現し、主要なフラグメントイオンも合成標品のそれ（Fig. 6）と全く一致した。

以上の諸実験から、BV を家児に経口投与し、その尿から得たソビドリン陽性の結晶は2-(2-amino-2-carboxy-ethylthio)-3-methyl-butyrylurea (BC) の構造である。

考 察
この実験において、BV を経口投与した家児の尿から2-(2-amino-2-carboxy-ethylthio)-3-methyl-butyrylureaが結晶として単離された。この化合物が生成される機構については未だ不明な点もあるが、この種の誘導体が生成する機構が生体内に存在することは既に多くの報告があり、特にメルカプトソール酸誘導体の生成は一般によく知られている。

基質である化合物の反応部位について考察すると、今回得られたBCはBVの共役部分とシステインのSH部分で結合した形である。これと類似するものとしては、例えば、1-モノクロロプロテイン10のようなハログイドアルキルおよびペンジルハライド17,18も同様にハログイド部分でメルカプトソール酸誘導体を生成することが知られている。

しかし、この種の誘導体の生成には、必ずしも基質化物がハログイドを有している必要はなく、ペンゼン、ナフタリン、フェナントレン、アントラセン、ビレン、ベンツアントラセン、モノクロロペンゼンのようなハログイド化ペンゼン、芳香族アミン20等の芳香族化合物および21-23等の脂肪族化合物についての報告があり、これらは化合物分子中の活性な水素原子がメルカプトソール酸誘導体の生成に関与していることを示している。

さらにハログイドを有しているものでも選択性があり、例えば、3,4-ジクロロニトロペンゼン、2,3,4-トリクロロニトロペンゼン等の代謝24に見られるように、ハログイド部位でメルカプトソール酸誘導体を生成する場合でも、核に置換しているハログイドのうち、ニトロ基に対してオルトまたはパラ位のハログイドが関与する。従って、以上

の事実を合せて、今回得られた BC を考察すると、BV の臭素とシステインが直接置換して BC が生成したものの、あるいは BV の脱プロモ体を中間体として生成したものであるかは代謝経路を考える上で重要となる。

低級脂肪酸のシステイン誘導体については、アリスパルシン32-34)（イソフラン酸の Ca でシステインとチオエーテル結合）が高コレステロール血症患者の尿中に、またこのものはネコの尿中に常存分として存在することが報告され、アリソブテイン35)（イソフラン酸の C6 でシステインとチオエーテル結合）が人尿中に常存分として存在し、酵素とシステインがチオエーテル結合したもののが37)糖尿病または高血圧患者の尿中に、また山羊の尿や馬の肝臓（微量）に常存分として存在することが報告されている。低級アルコールのシステイン誘導体としてフェリシン38)（イソプロパノールの C6 でシステインとチオエーテル結合）がネコの尿中に常存分として存在すると報告がある。しかし、低級脂肪酸のクレイン化合物にシステインが結合したものについては、常存分として存在するとの報告がないため、BV 投与尿から得られ

た BC は BV の代謝物と考えられる。

また、BC の生成を有機化学的な面から考察すると、一般にハロゲン化アルキルはアルカリ性の条件下でチオール化合物あるいは硫化アルカリと反応してスルフィドを容易に生成し、また、オレフィン類もメルカプタン等が付加してスルフィドを生成する。従って、今回得られた BC が酵素反応によるものか、あるいは非酵素的反応に基づいて生成したかは興味ある問題であるが、これについては検討中である。

結論

1. プロテオール素 (BV) 18 を家兎に経口投与し、その24時間排泄尿から新エニンヒドリン陽性物質を検出し、結晶として単離した。

2. この物質のマススペクトルを解析し、一方、この物質を合成することにより、この代謝物の化学構造は 2-(2-amino-2-carboxy-ethylthio)-3-methyl-butyrylurea (BC) であることを確認した。

3. BC を検出し、結晶として取出する分析方法、BCの合成法ならびに BC のミクロエステル化方法を確立した。