Attempts were made to reveal the composition of paralytic shellfish poisons (PSP) in the mussel Mytilus edulis from Funka Bay, Hokkaido.

The shucked mussels were extracted with 80% ethanol (pH 2.0). The extract was defatted with chloroform, treated with activated charcoal, and then purified by column chromatography on Bio-Gel P-2 and Bio-Rex 70. Each fraction thus obtained was analyzed by fluorescence intensity monitoring and mouse assay. PSP components contained in toxic fractions were identified by using cellulose acetate membrane electrophoresis and thin layer chromatography on silica gel.

The mussel from Funka Bay was found to contain gonyautoxin VIII and its epimer, together with gonyautoxin I—V, saxitoxin and neosaxitoxin. The ratios of each PSP component in the total toxicity were as follows: gonyautoxin I (31%), gonyautoxin II (12%), gonyautoxin III (15%), gonyautoxin IV (16%), gonyautoxin V (3%), gonyautoxin VIII plus its epimer (2%), saxitoxin plus neosaxitoxin (21%). This is the first time that gonyautoxin VIII and its epimer, which have been mainly detected in the bivalves of the western part of Japan, are detected in Hokkaido.

It was revealed from these results that low toxic components having N-sulfonato carbamoyl group such as gonyautoxin V and VIII are present not only in the western part of Japan but also in the eastern part of Japan, particularly in Hokkaido.

Keywords —— paralytic shellfish poison; Mytilus edulis; Bio-Rex 70; gonyautoxin; saxitoxin; neosaxitoxin; N-sulfonato carbamoyl group; cellulose acetate membrane electrophoresis

緒 言
麻痹性貝毒（paralytic shellfish poison, 以下 PSP と略記する）は、渦盤藻類である Protothaca pectinata, Protoceratium reticulatum などの産生する強力な神経毒である。これらのプランクトンは、主に西日本に P. catenella, 東日本に P. tamarensis が分布しており、これらにより産生される PSP はプランクトンフレッターであるイガイ、フナガイなどの軟体動物に蓄積されて麻痹性貝中毒の原因となる。北海道南部、岩手県大船渡市、山口県仙崎市などでは、毎年連続して PSP による貝類の毒化がみられ、その他の多くの海域でもこのような貝類の毒化が報告されている。1979年1月、山口県仙崎町では PSP により毒化したマサキを食べてしまい16人が食中毒にかかり、また、同年4月、北海道旭川市でも PSP により毒化した蒸魚卵のマサキイガイを食べた3人が食中毒にかかり、このうち1人が死亡している。このように PSP による貝類の毒化は蒸魚卵、大船渡海産のフナガイの養殖、仙崎海産のマサキや養殖などを対象とし公衆衛生、食品衛生にとって重大な問題となっている。

著者らは蒸魚卵を想定として、そこに分布する P. tamarensis 及びそれによる毒化した二枚貝との間の PSP
成分の相互関係を明らかにする目的で、両者の PSP 成分を調べ、基準を gonyautoxin (GTX) 群を主成分としているものの、P. tamaresis が GTX₄、saxitoxin (STX)、neosaxitoxin (neoSTX) の 5 成分を、ハラチャガイが GTX₃、STX、neoSTX の 7 成分をそれぞれ含んでおり、また個々の PSP 成分の量も両者の間で異なっていることを明らかにした。このことは、両種の PSP 成分の体験的変換の可能性を示唆する。また、著者らは、これまでに西日本産の二枚貝に主に検出され、既存の PSP 成分の新規的成分を導入することによって、これらの PSP 成分の検討を行なったので、以下の実験を示す。

実 験 の 部

1. 試料 1983年5月13日、北海道噴火湾沿岸の毎日報で採集したムラサキガイ Mysilus edulis 51個（平均重240g、むき身の平均毒性値 2 MU/g）を生きたまま研究室に運び、貝を除去してむき身とした後、以下の実験をした。

2. 抽出・精製 噴火湾産ハラチャガイからの PSP 抽出・精製は、主に抽出・精製を行なった。

1) 抽出 —– 上記のむき身約 4.5kg（総重量 9000 MU）を 2倍発の 8％エタノール (pH 2.0) で 3回抽出し、得られた抽出液を蒸発乾燥後、クロロホルムで脱脂した。

2) 精製 —– 水酢酸和鈍粉処理し、粗製成分を吸着させた後、酢酸エタールでこれを溶出させた。脱脂液を減圧乾燥後、pH 5.5 で調製し、Bio-Gel P-2（Bio-Rad Lab.）カラム (φ 3×40cm) にのせ精製成分を吸着させた。カラムを蒸留水で洗浄後、0.15 n 酢酸 2000ml で有効成分を溶出させた。得られた有効分画を蒸発乾燥後、Bio-Rex 70（H₄ 型, -400 メッシュ, Bio-Rad Lab.) のカラム (φ 1×100cm) に吸着させ、0.05 n 酢酸 (300ml–300ml)、0.05–1.50 n 酢酸 (300ml–3000ml) のリニアグレインジェント法により有効成分の精製を行なった。この際、ベリスタポンプ (アトム機械, SJ-1211 型) の流量を 0.5ml/min とし、フラクションコレクター (東洋科学産業, SF-2000 H) 型により 12mlずつ分取した。

3. 分析法 1) 著力の測定 1％過酸化水素水の反応により PSP が著力を発することを利用

して各分画の著力試験を測定した。すなわち、試験管にそれぞれの分画から 0.5 ml を取り、これに 1％過酸化水
素水 0.5 ml を加え、15分間放置後、著力著力度計 (日
立 600-10 型) を用い、励起波長 365nm、著力波長 400
nm にて著力強度を測定した。

2) 著力の測定 1) 著力のマウスに対する著力
(MU) を測定し、著力強度と共にグラフ上にプロット
した。著力に対する著力は A.O.A.C. 法7 及び麻原
性著力検査法 (厚生省環境衛生局発表) に従い、
体重 18–20g の ddY 系マウスを用いて測定した。

3) 電気泳動 1) 著力成分の溶出曲線 (Fig. 1) にみられる 5つの著力 (Fr. I–Fr. V) をそれぞれ減圧濃縮し、40％メタノール中に保存しておいたセルロースアセチル薄膜 (12×12cm, Cellogel, Chemetron) に GTX グリセリン (GTX₃ー2, GTX₅ー1) のエッマのある GTX₅ のみを用いた。STX グリセリン (STX, neoSTX) と共に塗布し、0.8m A/cm² で 30分間泳動させた。この際、電極液には 0.08 n トリス塩酸緩衝液 (pH 8.7) を使用した。泳動後、1％過酸化水素水を噴霧し、110℃で 10分間加熱後、365nm の著力ランプ (Ultra-Violet Products, Inc. TL-33 型) により著力成分を検出した。なお、著力として用いた GTX₅ー2, GTX₅ー1, STX, neoSTX は東京大学農学部農薬化学研究室橋本周教授、野口雄博士から寄与されたものである。

4) 熱可塑性グラフィンシリンゴルートを用いて HPTLC プレート（10×20cm, Merck）に上記試料液及び PSP 標準液を塗布し、ビリジン-酢酸=エチル-酢酸-水 (45:25:15:30, v/v) を用いて展開した。展開後、著力成分を電気泳動の場合と同様にして検出した。

4. 著力成分の定量 Bio-Gel P-2 处理まで行なった粗著力成分の 1 部を 1 MU/ml に調整後、セルロースアセチル膜電気泳動により著力成分に分け、0.01 n 酢酸を用いた調製より抽出し、著力測定し、著力成分の分画を測定した。

結果と考察 ムラサキガイに含まれる有効成分の溶出曲線 (Fig. 1)において、1％過酸化水素水との反応により強い著力
を生じる Fr. I は、その腹腔内注射によりマウスを死に
至らしめるまでには到らないが、マウスに明らかな麻痺
症状を起こさせたため、Fr. I には PSP が含まれている
ものと推定された。Fr. I–Fr. V に含まれる著力成分を
電気泳動法及び熱可塑性グラフィトにより分析した
結果を Fig. 2, Fig. 3 に示した。Fr. I に含まれる著力成分は電気泳動において著効的に
Fig. 1. Elution Diagram of Mussel Toxins from a Bio-Rex 70 Column.

Fig. 2. Electrophoretic Behavior of Mussel Toxins on a Cellulose Acetate Membrane.

Relative mobility was calculated by assuming the mobility of STX as 1.0.

なお、セルロースアセテート膜電気泳動を用いた切り取り抽出により求めた各PSP成分の組成は、GTX₃ (31%)、GTX₄ (12%)、GTX₅ (15%)、GTX₆ (16%)は、GTX₇ (3%)、GTX₈+GTX₉ =ビマー（2%）、STX +neoSTX (21%)であった。

これまで、新潟県産の二枚貝について、高毒性であるGTX₃及びGTX₄の前駆体としての可能性の示唆されているGTX₈やGTX₉＝ビマーのような低毒性成分の検出報告はなく、今回報告の検出が初めてである。今回の実験に用いた菌生キイガイから検出されたGTX₈（赤塩酸による加水分解で毒性の強いSTXに変換する(10)）、GTX₉及びGTX₉＝ビマーは著者の培養したP. tamariscisからは検出されておらず、(11)多枚貝の飼となるP. tamariscisに含まれるPSP成分は、フラントンフィーダーである二枚貝を介する食物連鎖を通じてより多様化するものと推測される。

このようにPSP成分のうちGTX₃、GTX₄などのようなN-sulfonato carbamoyl基を有する低毒性成分は、これまで報告されている新潟県産とは異なり、東日本、特に北海道地方にも存在し、これら成分の分布については西日本、東日本といった地域による差のないことが、これまでのホタルガイのPSP成分(12)及び今回のムラサキガイのPSP成分の検討を通じて明らかとなっ

ただし、このような低毒性成分を量的面から見た場合、西日本と東日本との関には相違があるように思われる。すなわち、西田(13)は、徳島県産のムラサキガイからGTX₃、GTX₈（赤塩酸による加水分解で毒性のneoSTXに変換する(14)）、GTX₉をそれぞれ7%、2%、11%検出し、また、香川県産のムラサキガイ
ガイからGTX₅，GTX₆，GTX₈をそれぞれ1.8％，1.3％，5.4％検出ししている。著者らは、前報のように福井産のムラサキガイからGTX₅，GTX₆+GTX₈エピマーをそれぞれ3％，2％検出し，また，同産産のホタテガイを用いた前回の研究⁹においてGTX₅を2％検出し得た。このようなことからGTX₅，GTX₆のようなみかけは低毒性であっても，潜在的に強い毒性のある成分は量的には東日本よりも西日本のPSPに多く考えられる。

謝辞　貴重なGTX₅～₈，STX及びneoSTX標品を与えられた東京大学農学部水産化学研究室橋本周久教授，野口玉雄博士に深甚なる謝意を表する。また，貴重な試料提供の便宜を与えられた北海道指導漁業協同組合連合会函館支所長田口清代氏に心から御礼申し上げる。

引 用 文 献
2) 野口玉雄，橋本周久，医学のあゆみ，112，861（1980）．
3) 淺川　学，高木光雄，北海道研究報告，34，35（1983）.
4) 淺川　学，高木光雄，北海道研究報告，34，140（1983）．
8) 厚生省環境衛生局乳業衛生課，通報，食品衛生研究，30，767（1980）.
14) a) 西条雅彦，野口玉雄，丸山栄一，橋本周久，昭和58年度日本水産学会春季大会講演要旨集，1983，p. 215；b) 西条雅彦，野口玉雄，丸山栄一，橋本周久，同要旨集，1983，p. 216．