1.3 気体の燃焼

平成15年度までは、国内および国際会議の論文の他に、各種のジャーナルを参照して報告していたが、ジャーナル論文は、投稿から掲載までに、1～2年度の時間がかかるものもあるなどあり、論文の質は、非常に高いが、最新の動向を述べるのには、少し時間が経過ごしていると思われる。従って、昨年度と同様に燃焼シンポジウムの発表内容を参考に平成17年度の気体の燃焼に関する研究動向について述べた。 第43回燃焼シンポジウムは、2005年2月、東京で開催された。今回は、紙面の都合もあり、層流火災と乱流火災に話題を取り、その研究動向を紹介する。

1. 層流火災

近年の層流火災に関する研究では、大きく2つに分類することができる。1つは、従来から重要とされる燃焼研究の基礎として位置づけられる（基礎研究）であり、もう1つは、燃焼の技術を多様化して応用展開する試みに関連する研究（展開研究）である。基礎研究では、基本的に流れの構造解析を中心とした流体力学的特性の検討が実験的な研究の主体である。その場合には、層流火災であっても旋回流などの渦中に形成される火災を対象とした研究課題に検討を加える傾向が多いために、PIV（粒子画像変位計測）が使用に重要な役割を果たしている。また、数値計算は、Chemkin IIIを基にプロパンの反応機構を考慮した数値計算コードを構築し検討を加え研究が行われる傾向にある。また、数値計算では、詳細分析重視が成立火災の研究に対して主流を果たしているが、乱流火災のような複雑な流れ場の火災を対象とする場合には、数値反応計算、平成10年度3月から行われている。

2. 乱流火災

乱流火災の研究では、流体化火災面の局所的構造について検討を加える研究と乱流火災を模擬する研究、すなわち実験数値的分野としての研究を示す。前者が研究に重要で、近年の傾向として、2つある。一つは、乱流火災の局所的特徴について検討を加える研究が主流である。特に、実験的な研究では、計測方法が従来よりも高精度かつ詳細化している傾向にある。たとえば、流速の伝播機器を対象とした研究では、PIVと高速度ビデオカメラの同期測定を行い火炎速度と流れの大きさを測定して測定する。微細な流れ場を詳細に検討している。乱流火災の発火面の構造に対しては、4つの静電電極を用いて流体予混合火災面を3次元で計測する試みが行われた。さらに、この手法と2次元同時計測が可能なLDVを併用して、火炎面挙動とガス流速の関係について検討が行われている。乱流火災の発火面の構造に対しては、4つの静電電極を用いて流体予混合火災面を3次元で計測する試みが行われた。さらに、この手法と2次元同時計測が可能なLDVを併用して、火炎面挙動とガス流速の関係について検討が行われている。それらの研究の問題点、下記の研究を行っているが、乱流火災の微細構造の結果と妥当性を調べる上で非常に有用であると思われる。このような研究が発展することは、乱流火災の微細構造に対して単純に進化しているDNSの乱流とその干涉などのCG結果を検討するために重要な役割を果たすと考えられる。
その他の実験的な研究としては、乱流予混合火災の燃焼速度に対する圧力変化の影響や高温高圧条件下におけるCO₂希釈の影響などガスタービン燃焼器の基礎研究として位置づけられる研究が昨年同様行われている。実用燃焼に対する乱流火災の基礎研究では、いずれの研究も発熱量の低い低質燃料を安定に燃焼させる高温低酸素度条件に対応する研究である。その研究動向は、局所的な反応帯の厚さの測定に関する研究に代表されるように、より詳細な火炎構造に対して検討が加えられている。

DNSに基づく研究としては、乱流エネルギー、乱流スカラー流束に対する検討や DNS とレイノルズ応力を修正 k-ε モデル、乱流スカラー流束を 2 つモーメントモデルにより計算する乱流モデルと比較検討する試みなどが行われている。また、乱流予混合火災の数値計算では、LES（Large Eddy Simulation）が用いられる傾向がある。その結果の検証のために、詳細反応機構と輸送係数、熟性の温度依存性等を考慮した DNS も行われた。

文獻: References
1) 第 43 回燃焼シンポジウム講演論文集,(2005)

2. ボイラの動向

2.1 火力発電用ボイラ

1. 日の本火力発電用ボイラの動向

(1) 国内需要動向

国内の平成 17 年度需要電力量（一般電気事業用推定実績）は、前年度に対し 0.6%増となる見込みである（表 1 参照）。これは、機器の省エネルギー化が進むなどの減少要因が有る一方で、景気後半の回復を要する産業用・家用电の需要が伸びて増加していることに加え、冬季に気温が低く低下したことによる暖房需要が増加したことなどによる。平成は昭和 12 年の記録的低温による影響の反動から 0.2%減と見込まれている。今後の電力需要の見通しは、高齢化や IT 化が進み、機器の電化率が上昇するなどの増加要因が有る一方、人口が減少に転じたことや省エネルギーの進展等が減少する要因をもつことから増加率は鈍化すると予想されている。昨年度の需要電力量の将来伸び率年平均値 1.2%（年平均）に対し、前年度低めに見込んで平成 16 年度から平成 27 年度までの平均伸び率は 0.8%と見込まれている。

一方、平成 17 年度の最大需要電力は、暑い夏が続かなかったため特に大きく伸びず、前年度と比較すると 0.9%の減少と

<table>
<thead>
<tr>
<th>平成 16 年（2004年）度</th>
<th>平成 17 年（2005年）度</th>
<th>平成 27 年（2015年）度</th>
<th>平成 16～27年度年平均増加率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>需要電力量（販売電力）（億 kWh）</td>
<td>8,854</td>
<td>8,708</td>
<td>9,430</td>
</tr>
<tr>
<td>最大需要電力（送電端）（万 kW）</td>
<td>17,182</td>
<td>17,024</td>
<td>18,690</td>
</tr>
<tr>
<td>年負荷率（％）</td>
<td>60.7</td>
<td>61.7</td>
<td>60.9</td>
</tr>
</tbody>
</table>

注1. 平成 17 年度（推定実績）は 4 ～ 12 月実績、1 ～ 3 月推定
注2. 平成 17 年度の（）内は前年度増加率（％）
注3. 年負荷率とは、最大需要電力に対する年平均需要電力の比をいい、夏季ピーク需要が大きくなるのに伴い、年負荷率は小さい値となる。