ETBEを配合したレギュラーガソリン（バイオガソリン）の試験販売（経済産業省の補助金を得て実施する流通実証事業）が開始された。2007年度の1年間で約2万ℓのバイオETBEが利用されたが、2008年度以降顕著な拡大が見込まれる予定で、本格導入に向けた取組みが進められている。このバイオガソリンは、品質的にはJIS、及び単独油等の品質の確保等に関する法律（略称：品質法）の規格に沿ったレギュラーガソリンである。また、バイオエタノールを直接ガソリンに3％混合した「E3ガソリン」と呼ばれるガソリンも一部地域で販売されている。

（2）軽油へのバイオマス燃料導入動向
植物油脂（バイオオイル）から製造されるバイオオイル燃料の一種であるFAME（Fatty Acid Methyl Ester）の軽油への利用に対応するため、2007年3月に品質法が改正され、軽油の規格はFAME混合軽油と非混合軽油の2通りとなった。FAME混合軽油は現在、地方自治体を中心にとり一部地域で利用されている。このFAME混合軽油の利用過程における品質安定性と各設備に与える影響を調べるため、経済産業省の補助を受け平成18年度より2年間にわたって（財）石油製品活性化センターが実施した「石油製品代替製品等品質実態調査事業」において、FAME混合軽油は酸化安定化が悪化する場合があることが示された。

一方、FAMEより酸化安定性に優れた第二世代バイオディーゼル燃料の開発も進められている。新日本石油（株）、トヨタ自動車（株）及び日野自動車（株）は、水素化処理技術を用いた第二世代バイオディーゼル燃料（BHD: Bio Hydrofined Diesel）の開発を進めており、2007年10月10日から2008年3月末まで、東京都においてBHDを使用したハイブリッドバスの営業運行が実施された。

3.2.4 実業（セメント）

1. はじめに
2007年度のセメント国内消費は、公共工事削減のマイナス要因に加え、2007年6月の改正建築基準法の施行により対象の適格化に民間建築工事が大幅に落ち込み、同年6月より2008年3月まで10ヶ月連続で前年度マイナスとなり、トータルで、前年度比94.1%の54,575千tとなった。

一方、セメント輸出は、国内消費の落ち込みをカバーすべく海外向け出荷を増やしたことにより、前年度比104%と3年ぶりに前年プラスとなり2年ぶりに10,000千tを上回った。

このような状況の中、セメント生産量（輸出クリンカ相当を含む）は、前年度比96.5%の70,600千tとなり、2006年度を下回った（表1）。

2. 熱エネルギー使用状況

（1）概況

セメント製造業における熱エネルギー使用状況を表2に示す。

2007年度の石炭、石油コークス、重油等の熱エネルギー使用量は前年比101%の10,194千t、カロリー換算で63203 kcalと前年度並みであった。

表3 ガソリン乗車の10・15モード燃費平均価の推移

<table>
<thead>
<tr>
<th>年度</th>
<th>2000年度</th>
<th>2004年度</th>
<th>2005年度</th>
<th>2006年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>15.0</td>
<td>15.1</td>
<td>15.5</td>
<td></td>
</tr>
</tbody>
</table>

表4 給油所店頭価格（全国平均）

<table>
<thead>
<tr>
<th>ガソリン</th>
<th>煤油</th>
<th>プレミアム</th>
<th>レギュラー</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005年12月</td>
<td>140</td>
<td>129</td>
<td>106</td>
</tr>
<tr>
<td>2006年12月</td>
<td>145</td>
<td>134</td>
<td>113</td>
</tr>
<tr>
<td>2007年12月</td>
<td>167</td>
<td>156</td>
<td>134</td>
</tr>
</tbody>
</table>

1年度間の価格変化率

<table>
<thead>
<tr>
<th>ガソリン</th>
<th>煤油</th>
<th>プレミアム</th>
<th>レギュラー</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005年12月</td>
<td>140</td>
<td>129</td>
<td>106</td>
</tr>
<tr>
<td>2006年12月</td>
<td>145</td>
<td>134</td>
<td>113</td>
</tr>
<tr>
<td>2007年12月</td>
<td>167</td>
<td>156</td>
<td>134</td>
</tr>
</tbody>
</table>

1年度間の価格変化率

（出所）「ガソリン市場の傾向をみる」(http://www.energ.go.jp/gasoline/market/trend.html)

セメント製造用熱エネルギー原単位は、石炭換算で前年比101.4%の108.8kg/t、カロリー換算で675千kcal/tであった。

(2) 石炭
2007年度のセメント製造用及び自家発電用の石炭の使用量は、前年比101.0%の7,953千tと増加した。これは、電力供給事業による自家発電用が増えたことによるものである。また、国別石炭入荷量構成比を見ると、ロシア38%、中国20%、インドネシア19%、豪州19%、ベトナム4%となりロシアからの輸入が最も多かった（図1）。

熱エネルギー全体に占める石炭の比率は依然として高く70%以上となっている。

(3) 石油コックス
石油コックスは、原油価格上昇により使用量が減少してきたが、石炭価格の急騰により、2005、2006年度と2年連続で使用量が増加した。しかし、2007年度は原油価格の急騰並びに需給逆位により再び前年比86.8%の949千tと減少した。

(4) 重油
2007年度のセメント製造用及び自家発電用の重油の使用量は、前年比76.5%の104千tに減少した。

セメント製造において重油は、石炭供給、燃焼器の電気省エネルギー化を促進するとともに循環型社会の構築に貢献するため、供給を拡大してきた。2007年度のセメント製造用及び自家発電用の重油の使用量は前年比128.3%の676千tと大幅に増加した。

3. 電力エネルギー使用状況
(1) 概況
セメント製造業における電力エネルギー使用状況を表3に示す。

2007年度の電力エネルギー使用量は前年比97.3%の7,715百万kWhと減少した。

セメント製造用電力エネルギー原単位は、前年比100.7%の103.5kWh/tであった。

(2) 自家発電
2007年度は自家発電、購入電力量ともに減少したが自家発電比は2006年度に比べ、0.8ポイント上昇し62.4%であった。
表3 電力エネルギー使用量並びに原単位の推移

<table>
<thead>
<tr>
<th>年度</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>消費量</td>
<td>原単位</td>
<td>消費量</td>
<td>原単位</td>
<td>消費量</td>
</tr>
<tr>
<td>購入電力</td>
<td>百万kWh</td>
<td>2,769</td>
<td>2,718</td>
<td>2,886</td>
<td>3,045</td>
</tr>
<tr>
<td>自家</td>
<td>百万kWh</td>
<td>4,279</td>
<td>4,255</td>
<td>4,183</td>
<td>4,143</td>
</tr>
<tr>
<td>火力</td>
<td>百万kWh</td>
<td>759</td>
<td>714</td>
<td>754</td>
<td>718</td>
</tr>
<tr>
<td>燃料</td>
<td>百万kWh</td>
<td>7,087</td>
<td>7,687</td>
<td>7,924</td>
<td>7,926</td>
</tr>
<tr>
<td>セメント製造用</td>
<td>百万kWh</td>
<td>7,319</td>
<td>996</td>
<td>7,216</td>
<td>100.7</td>
</tr>
<tr>
<td>副業</td>
<td>百万kWh</td>
<td>488</td>
<td>471</td>
<td>410</td>
<td>425</td>
</tr>
<tr>
<td>計</td>
<td>百万kWh</td>
<td>7,807</td>
<td>7,687</td>
<td>7,924</td>
<td>7,926</td>
</tr>
</tbody>
</table>

（注）1. 供給別について ①自家発電量には副業用を除く。
②原単位はセメント製造用電力エネルギー原単位（kWh/t）

また、排熱発電による熱回収量は、前年比93.6％、カロリー換算で1,415兆kcal（672百万kWh×2,105kcal/kWh）であっ
た。

3) 購入電力
2007年度の購入電力量はセメント生産の減少に伴い、前年比95.3％の2,901百万kWhとなり、144百万kWh減少した。

4. 省エネルギー対策
(1) 熱エネルギー原単位
我が国では、1980年代までに最新鋭の設備・技術を導入し、いち早く世界トップレベルの原単位となった。しかし、その
後は省エネ設備が行き渡ったことから改善余地が少なくなり、1990年以降横ばいの状態が続いたが、近年では、原料として
下水汚泥などエネルギーを必要とする高含水物の受入れの拡大により、增加傾向にある（図2）。
直接的な省エネルギーではないが、セメント産業においては廃タイヤ、廃プラスチック、バイオマス等の廃棄物の利用
が拡大してきている（図3）。

セメント製造では廃棄物を熱エネルギー源として有効活用出来ることはなく、他産業などから排出される廃棄物をサー
マルリサイクルすることで、化石起源エネルギーを節約し、日
このような状況においても、地球温暖化防止に向け、少しだけ省エネルギーを図るため生産技術・設備のきめ細かな改善努力が続けられている。

(2) 電力エネルギー原単位
電力エネルギー原単位も熟エネルギー原単位と同様、1990年度までは省エネルギー設備・省エネルギー技術の導入によって大幅に低下させ、そのレベルを保ってきたが、1995年度以降は上昇傾向にある（図4）。

省エネルギー対策としては、原料粉砕用の堅型ミルやセメント粉砕用としての予備粉砕機の導入等がある。
しかし、バブル崩壊以降、セメント需要が急激に減少し、今後需要の減少も予想される。
現状では省エネルギー設備へのリプレースは、投資回収に長期間を要するため、これら省エネルギー設備への投資を積極的に行うには厳しい環境となっている。
一方、セメント業界は社会全体の環境負荷低減並びに生産コスト低減に寄与する廃棄物・副産物の活用を拡大してきており、そのための設備投資は積極的に行われている。このような新規設備の運転力の増加が、近年の電力エネルギー原単位を上昇させている一因である（図5）。
また、セメントの多品種化や廃棄物の活用拡大による設備能力の低下なども電力エネルギー原単位の上昇要因となっている。
今後もこのような傾向が続くと考えられ、よりきめ細かなエネルギー管理の向上が求められている。