4. 原子力

4.1 ウラン資源の開発動向

1. ウランの需要と供給

現在、ウラン生産量は需要の7割程度しか満たしておらず、不足分は、電力会社が保有している在庫のほか、ロシアの解体核兵器から取り出されたウランなどが補完している状況である。

今後、需要については、中国、ロシア、インド等による積極的な原子力開発や、欧米の原子力開発路線への復帰により、増大すると予想されている。一方、供給については、電力会社の在庫は払底し、解体核兵器派生ウランの再生供給も大きく減少すると予想されている。さらに、新規ウラン鉱山の生産開始、拡大までにはリードタイムが必要であり、2020年代前半には供給が需要に追いつけない懸念がある。

なお、将来の需要を前提に加えて、ウラン市場への投機的资金が流入したことにより、ウランの市場価格は2003年後半から大きく上昇。現在は2007年後半のピーク時に比べて価格は落ち着いたものの、依然高めの水準を維持している。

2. ウラン資源の分布と開発状況

OECD-NEA/IAEAの発表によれば、2007年時点の埋蔵量（既知資源）は約547万tUであり、オーストラリア、カザフスタン、カナダ、アメリカ、アフリカ諸国に多くのウラン資源が確認されており、これらの地域が主要なウラン生産地となっている（図1参照）。

1990年代にはウランの市場価格が低迷していたことから、生産量が大きく落ち込み、生産者の数も減ったが、上述のとおり将来の需要増加は予測されていることから、ウランの需要価格が見直ししてきたことから、ここ数年、世界中で既存鉱山の拡張や生産延長、新規鉱山の開発が進んでいる。

生産量が世界第1位（2009年）のカザフスタンにおいては、ウラン鉱山開発が積極的に行われている。また、外国企業の参入も見られ、2006年から2007年にかけて小泉首相、甘利経済産業大臣（いずれも当時）がカザフスタンを訪問し、ウラン鉱山の開発等について協力関係を確認している。現在は、日本の電力、電力会社及びメーカー等がカザフスタンにおけるウラン鉱山開発に積極的に参加している。

生産量が世界第2位（2009年）のカナダにおいては、現在、埋蔵量が集中しているサスカチュワン州を中心に、多数の企業が探鉱活動を行っている。日本企業も探査に参加している。同州および、開発中及び生産中の鉱山の経済を一部保有しており、出光興産及び東京電力が探査しているシガー・レイク鉱山は、2013年の生産を目的としている。また、品位が高いことからフル生産に達すれば世界有数の規模のウラン鉱山となる。

世界で最も埋蔵量が多く、生産量も世界第3位（2009年）のオーストラリアにおいては、2007年4月、労働者数が従来の3鉱山政策（既存3鉱山以外でのウラン生産を認めない政策）を転換、開発の判断を州政府に委ねようようになったものの、未だ多くの州政府は反対している。但し、南オーストラリア州政府は開発推進の立場をとっており、既存鉱山の拡張

図1 世界のウラン資源埋蔵量
や新規鈾山の開発が進むことが期待されている。

文獻：References
1) WNA, The Global Nuclear Fuel Market, Supply and Demand 2009-2030
2) Trade Tech, Nuclear market Review 3) OECD-NEA/IAEA (2008), Uranium 2007: Resources, Production & Demand

4.2 原子力発電の現状

1. 原子力発電プラントの運転・建設状況

平成21年度末現在におけるわが国の原子力発電プラントは、沸騰水型軽水炉（BWR）30基2856.9万kW、圧水型軽水炉（PWR）24基2027.8万kW、合計54基48847万kW、これらによる平成21年度総発電力圧力は、2775億kWhとなっている。また、平成21年度末現在、建設中の原子力発電プラントは2基2756.5万kW、着工準備中は12基約1655万kWとなっている（表1参照）。

平成21年度における原子力発電プラントの設備利用率は全プラント平均で65.7％となり、前年度実績の60.0％から約5％上昇した。
なお、原子力発電所において、平成21年度に法律に基づき報告されたトラブルの件数は15件であり、原子炉1基当たりの件数としては約0.3件であった。これらのトラブルの国内原子力事象評価尺度（INES）による評価は、レベル1・1件、レベル0+：1件、レベル0：12件。評価対象外：1件であった（暫定評価を含む）。

2. 今後の原子力発電プラントの開発

平成21年度末に各電力会社が公表した原子力発電プラントの開発計画によれば、2019年度（平成31年度）までに運転開始が予定されているものは、9基約1294万kW（うち、現在建設中のプラントが2基2756.5万kW）となっている。また全体の開発計画としては、14基約1931万kWとなっている。

4.3 原子燃料サイクル

1. 原子燃料サイクル計画の具体的な展開

(1) ウラン濃縮
ウラン濃縮の遠心分離法の技術については、日本においても日本原燃(株)六ヶ所濃縮工場で実用化されている。同工場は、平成4年3月に年間150トンSWUの規模で操業を開始し、順次拡大してきており、現在は年間1050トンSWUの施設規模となっている。最終的には、年間1500トンSWU規模まで拡大する予定である。

(2) 再処理
使用済燃料から再利用できるウランをプルトニウムを分離して取り出す再処理については、これまで中立としてイギリスとフランスに委託してきたが、平成5年4月より、商業用再処理施設の建設が青森県八戸市に日本原子力エネルギー研究開発機構に移され、平成22年6月に運転を開始した。現在の予定は、平成23年3月に商業運転を開始する予定である。また、これにより、通電作動試験、化学試験、ウラン試験を実施しており、平成21年3月からは、使用済燃料を用いた総合試験（アクティプ試験）を開始している。アクティプ試験は、5段階に分かれており、平成20年2月に第1ステップを開始した。
なお、現在では、国内唯一の再処理施設である日本原子力研究開発機構の東海再処理施設では、増殖再処理型が、1100トンを超える。

(3) MOX燃料利用
① プルサーマル計画
わが国では、再処利用によって得られるプルトニウムを原子燃料として再利用していくことを基本としており、政府は平成9年2月にプルサーマルを早急に開始することが必要であるとの閣議決定を行った。それを受けて、電気事業者は2015年までに全国16～18基の原子炉でプルサーマルを行うことを目標として準備を進めている。
このうち、最初に導入するべき準備を進めていた東京電力の福島第一3号機、柏崎刈羽3号機、関西電力の高浜3号機、4号機については、地元の声援等を求めるものの、その後のICCO事故の発生や関西電力のMOX燃料を製造したイギリス・BNFL社における製造時の品質管理データを巡る発覚、福島県におけるエネルギー政策全面に関する検討会の開催、新潟県刈羽村におけるプルサーマル導入に関する住民投票及び反対多数の結果等の要因があり、実施を見送っていた。さらに、東京電力では平成14年8月に公表した原子力発電所の点検・補修作業に係る不祥事によって、プルサーマルを進める状況ではなくなり、信頼回復を最優先に取り組んでいたところだったが、平成18年度には、発電設備においてデータ改訂等の問題があったことが明らかに判明し、より一層の信頼回復に係る努力を要する状況となっている。
こうした中、平成22年1月、福島第一3号機におけるプルサーマル実用の要請を行い、同年2月、福島県知事より、プルサーマル計画受け入れには3つの技術的条件（耐震安全性、高耐久劣化対策、MOX燃料の健全性）が必要不可欠であることを予定された。
また、関西電力では、平成14年9月に不正データ問題があったMOX燃料のBNFL社への返送が完了し、平成16年3月、高浜発電所での監視を進めていくことの地元理解を得て、海外製造メーカー等とMOX燃料の調達に関する基本契約を締結した。平成16年8月の同社高浜3号機の2次系配管破損事故が発生した。これにより、プルサーマル計画を中断し、事