日本エネルギー学会誌
Online ISSN : 1882-6121
Print ISSN : 0916-8753
ISSN-L : 0916-8753
接触水素化反応による二酸化炭素のメタノール変換技術の評価
大山 聖一
著者情報
ジャーナル フリー

1995 年 74 巻 3 号 p. 137-146

詳細
抄録

The recent status of catalytic hydrogenation of carbon dioxide to methanol was investigated. Although catalytic hydrogenation of CO2 requires H2 and energy, it shows much higher reaction rate than other CO2 conversion technologies. Especially, conversion to methanol is a promising technology because of its excellent characteristics as a fuel. Thermodynamically, lower temperatures and lower pressures are favorable for methanol synthesis from CO2 and higher temperatures are favorable for the reverse water gas shift reaction. Thus, a catalyst which is highly active below 473 K promises low-energy conversion to methanol. CO2 hydrogenation technology is classi-fied into a gas-phase synthesis and a liquid-phase synthesis from its reaction method. In the gas-phase synthesis, Cu/ZnO-based catalysts show space time yields comparable to those in the conventional methanol production process from syngas. The liquid-phase synthesis employing a homogeneous catalyst is expected to operate at lower temperatures than the gas-phase synthesis. In order to achieve efficient CO2 conversion to methanol, it is necessary to develop an active catalyst system at lower temperatures.

著者関連情報
© 社団法人日本エネルギー学会
前の記事 次の記事
feedback
Top