P-16 米ぬか及び小麦ふすまの水熱処理物から機能性物質の抽出

（日本大）○湯瀬 攝、樫本 鼓、金子枝里香、並木美耶子、菅野元行、角田雄亮、平野勝巳、（ガラスリソーシング（株））小松明博

Extraction of functional compound from hydrothermally treated rice bran and wheat bran

○Minoru YUZE, Tsuzumi ENOMOTO, Erika KANEKO, Miyako NAMIKI, Motoyuki SUGANO, Yusuke KAKUTA, Katsumi HIRANO (Nihon University), Akihiro Komatsu (Glass Resourcing, INC.)

SYNOPSIS: Two missions of this study is recovery of cerebroside as a valuable compound by solvent extraction, and recovery of monosaccharides by hydrolysis of polysaccharides from the hydrothermally treated rice bran and wheat bran. In this paper, effect of hydrothermally treated temperature on the yield and spectrum of the constituent containing cerebroside is discussed. Further, hydrolysis of the solvent insoluble constituent of hydrothermally treated rice bran with HCl aqueous solution is also carried out in order to obtain monosaccharides.

1. 緒言
現在、事業系食品薬物物の約55%は肥料化・飼料化によりリサイクルされているが、需要、処理時間、腐敗性等の面で問題を抱えている。

食品廃棄物の水熱処理を行うと既存の脱水工程を不要となり、体積減少、殺菌効果、時間短縮が見込まれる。本研究は食品廃棄物の水熱処理物から有用な物質を抽出し、リサイクルの高付加価値化を図るとともに、他成分の有効利用を検討することで、リサイクル率の向上を目的とする。高付加価値物質には、化粧品や医薬品に利用されているセレブロシドを選択しうれる。これが含有することが知られている米ぬかと小麦ふすまを試料に用いる。同時に、セレブロシド抽出の際に分離される多糖類の分解、抽出を図る。

本報では、A. セレブロシド、および糖類の抽出を目的とした水熱処理温度の策定、B. 水熱処理によるセレブロシド含有成分の有無、および水素分布におよぼす影響、C. 多糖類の分解を目的とした酸加水分解による成分収率の変化について検討する。

2. 実験操作
2-1. 水熱処理
米ぬか、または小麦ふすまと水30mlを内容積100ml電磁誘導攪拌式オートクレープに装入し、水熱処理を行った。処理温度を100℃、140℃、150℃に変化させ、処理圧力1.0MPa、保持時間0分に設定した。

2-2. 溶媒抽出
2-1で得られた処理米ぬか、または小麦ふすまを110℃で3時間真空乾燥させたものを試料に用いて溶媒抽出を行った。その操作をFig.1に示す。また、未処理試料に対しても同様の操作を行った。

Fig.1 溶媒抽出操作

2-3. アルカリ処理5によるCSHI成分の精製
2-2で得られたCSHI成分を0.4M KOHメタノール溶液に溶解させ37℃で4時間攪拌した。その後、反応液
にクロロホルム／水（容積比3：1）を混合し、上層と下層に分離した。さらに、下層のクロロホルム層をクロロホルム／メタノール／水（容積比16：16：16）で2回洗浄し、洗浄後の下層から溶媒を除去してアルカリ処理したものをえた。

2-4. HICI成分の酸加水分解
2-2で得られたHICI成分を試料に用いてTable 1に示す各酸加水分解反応を行ない、過より液（酸分解WS）と残液（酸分解WI）に分離した。なお、①はTable 1に示すように2段階の反応を行った。

Table 1 HICIの酸加水分解反応条件

<table>
<thead>
<tr>
<th>反応条件</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
</tr>
</thead>
<tbody>
<tr>
<td>反応温度</td>
<td>室温</td>
<td>40℃</td>
<td>80℃</td>
<td>160℃</td>
<td>室温</td>
<td>40℃</td>
<td>80℃</td>
</tr>
<tr>
<td>反応時間</td>
<td>15分</td>
<td>20分</td>
<td>20分</td>
<td>16h</td>
<td>15分</td>
<td>20分</td>
<td>16h</td>
</tr>
<tr>
<td>機械速度</td>
<td>300rpm</td>
<td>300rpm</td>
<td>300rpm</td>
<td>300rpm</td>
<td>300rpm</td>
<td>300rpm</td>
<td>300rpm</td>
</tr>
</tbody>
</table>

2-5. 分析
2-3で得られた酸分解WS成分について、HPLCにより単糖類から7糖類までの糖類を定量した。
2-4で得られたアルカリ処理CSHI成分について、未処理クロマトグラフィー（TLC）によりセレブロシドの定性を行なった。また、同成分のFT-IR、および1H-NMRスペクトルを測定し、水熱処理による官能基、および水素分布への影響を検討した。

3. 結果および考察
A. アルカリ処理CSHIに対する水熱処理温度の効果
各水熱処理温度のアルカリ試料CISHIをTLCにより分析し、Table 1に示すように、100℃から160℃の水熱処理で40℃の結果がCISHI成分の最大値である。よって、セレブロシドは160℃以上の水熱処理により変化すると考えられる。また、高欄上昇に伴いセレブロシドの熱分解が増加されるため、水熱処理温度で100℃が最適であると考えられる。
B. 水熱処理によるアルカリ処理CISHIへの影響
未処理米ぬか、および100℃水熱処理米ぬかのアルカリ処理CISHI成分のFT-IR、および1H-NMRスペクトルを測定し、得られたスペクトルに変化は見られなかった。よって、100℃の水熱処理はアルカリ処理CISHIの官能基、および水素分布に影響を与えないことが明らかとなり、セレブロシドの構造に影響しないと考えられる。また、小麦ふすまのアルカリ処理CISHI成分についても同様に分析した結果、米ぬかのそれと類似したスペクトルが確認された。
C. HICI成分の酸加水分解に関する検討
Fig.2にHICIの酸加水分解による成分収率の変化を示す。条件①では、酸分解WSの高い収率と比較すると、糖類収率がわずかである。条件②～⑦では酸分解WS収率に差が生じたが、糖類収率に大きな変化は見られなかった。よって、酸加水分解による多糖類の分解はわずかであり、それに伴う酸分解WS収率增加への影響は小さいと考えられる。以上のことから、HICIには多糖類以外の不溶性物質が多量に含有されており、それらが酸加水分解されることで酸分解WSが生成したことが示唆された。

Fig.2 HICIの酸加水分解による成分収率の変化

4. 結言
- 160℃の水熱処理を行うとセレブロシドはCISHI成分中に存在しない。
- 100℃の水熱処理はアルカリ処理CISHI成分中の官能基、および水素分布に影響を与えない。
- HICI成分から生成した酸分解WSに存在する物質の多くは多糖類由来ではない。

5. 参考文献
1) 食品リサイクルの現状、農林水産省、http://www.maff.go.jp/j/soushoku/recycle/syokuhin/s_about/pdf/zenzouyou.pdf
2) 高橋直也、北海道農研News, 8 (2005)
http://coryo.naro.afrgc.go.jp/kankobutto/noukennews/page/no8/p02.html
4) セルロースの事典、セルロース学会編、p.179 (2000), 朝倉書店
5) 油化学便覧、日本油化学学会編、丸善、p. 394 (2001)