昭和59年照明学会全国大会

蛍光ランプの直流電源による垂直点灯特性

○石川 碧男 石川 太郎 水野 銘章
（名古屋工業大学）

1.はじめに...直進で蛍光ランプを水平点灯させるとき、点灯初期において陽極間隔は非常に明るくふやしく輝いているが、点灯開始と同時に点灯が明るく輝かない状態では、陽極から10cmほどのおにピーカを持ち、陽極に向かって減衰し、発光が減る傾向を示すものである。著者らは、蛍光ランプを直進に密に上下の極性と、管壁温度を変化させ特徴を測定したうち、ある条件下で発光を一様に持続させることができたので報告する。

2.実験測定結果...電源を直流100V一定とし、ランプ（FL20SW）は管壁温度(T)を制御できるように冷却器の中でおり、直進に安定抵抗(123Ω)を取り付けランプ表面温度(L)を測定した。Fig.1(a)は、ランプの上側を陽極とした管壁温度を変化させた時の測定結果で、Fig.2(a)は、その時のランプ電流(I)とランプ電圧(V)の変化を示す。Fig.1(a)において等線で示しているのは、管壁温度を40℃に保った点灯初期の輝度分布である。陽極間隔はしばしば一様に明るく輝いている。しかし、しばしば点滅で40℃等線のように、輝度は陽極付近にピークを持ち陽極間隔は暗くなってしまい、管壁温度の低下とともにピーグ値が小さくなり、陽極間隔部分での輝度の減少はますます着しくなる。この時、ランプ電流は増加しランプ電圧は減少する。Fig.1(b)は、(a)とは逆に上側を陰極とした時の特性で、Fig.2(b)は、その時のランプ電流とランプ電圧を示す。上側陽極と比較して同じ管壁温度でも全体的に明るく、40℃の時などはさらによく輝いている。ランプ電流は低く、ランプ電圧は高い。すなわち管壁温度が高くなると、発光は明るくなるが、時間経過とともに水銀蒸気原子の増大が生じ、陽極を上側とすると水銀蒸気原子の増大で、輝度減少が一様になる、ルーチンで制御するのが不安であるのを避けるため、輝度を一定に保つことが必要である。

管壁温度が下がってくると、水銀蒸気原子密度が減少するために、陽極間隔部分がすくくなるのであるとと思われるが、これらをもう一つ考えることは、電圧が陽極間隔を速度を増して通り、水銀蒸気を圧縮化してしまい照射の割合が小さくなり、出ないのではないかと思われる。そしてこれに影響を受けるランプ電流を増加させる電圧を減少させた効果を持っている。

なお、蛍光ランプを垂直電源で点灯する場合、ランプを垂直に立てた上で、陽極と陰極として、管壁温度を40℃に保つと、発光は一様に発光し、発光が一様に発光できることを可能である。そして使用するランプは水銀蒸気圧の高いものを使う方が良い。

DC operation of vertically placed fluorescent lamp, Seiji Yabashi, Taro Ishikawa, Toshiaki Mizuno.