１．まえがき

煙中での見透し距離に関する研究は幾つかあるが①〜⑥, 見透方の評価に、物体の明るさ（輝度）や煙の物理的、化学的性質の影響、さらには人間の目への煙の刺激性による生理的影響まで考慮したものはない。ここでは、見透し距離への煙の刺激性の影響に関するこれまでの実験結果の概要の紹介と、さらに煙の刺激性の影響に関して行った補足実験の結果を報告する。

２．煙濃度と見透し距離

煙の中での発光形標識の視認限界の見透し距離（V）は下記により表される⑦, すなわち,

\[V \approx \frac{1}{C_i} \ln \frac{B_{os}}{\delta \times k} \]

ここで、\(C_i \): 煙濃度（減光係数 1/m）
\(B_{os} \): 標識の輝度（cd/m²）
\(\delta \): 視認限界の輝度対比（0.01〜0.05）
\(k \): 散乱係数と減光係数との比（0.4〜1.0）
\(L \): 照明光の散乱による煙の輝度（cd/m²）

また、反射板形標識の見透し距離（V）は

\[V \approx \frac{1}{C_i} \ln \frac{a}{\delta \times k} \]

ここで、\(a \): 反射板形標識の反射率で示される（付図参照）。
発光形標識を煙の満たした箱に設け、箱外からガラス越しに標識を見たときの煙濃度と、見透し距離との関係を求めたものを図 1 明示す。標識の輝度（\(C_i \)）と視認限界の見透し距離（V）との関係には、\(C_i \times V \approx \text{const.} \)なる関係が成立する。このときの値の値は、主に標識の反射率、および周囲とのコントラストにより定まる。これらの結果から煙中の視認限界の見透し距離を簡略化すると
発光形標識では \(V = (5 \sim 10)/C_i \) （m）
反射板形標識では \(V = (2 \sim 4)/C_i \) （m）
で示される。なお、箱内、箱外、箱内外の見透し距離は、反射率やコントラストを考慮すると \(C_i \times V \) の値が1〜2ぐらいいと考えてよい。

３．刺激性の煙中での見透し距離及び歩行速度

20 m の長さの箱の一端に誘導灯を設置し、被験者が実際に煙の中にはいり見透し距離を求めた実験例を 図 2 に示す。実験に用いた煙は2種類で、一つは刺激性的強い白煙で、木材をくん炎で燃やすことにより、もう1種類は、刺激性の比較的弱い黒煙で、灯油を燃やすことににより発生させた。

この実験では、まず誘導灯の有無が確認できる限界の煙濃度（\(C_i \)）と見透し距離（V）との関係を求めたが、前述の実験と同様 \(C_i \times V \approx \text{const.} \)なる関係が、煙の刺激性の有無に関係なくほぼ成立した。次に、誘導灯の表示面の文字“非常口”の判読できる限界の見透し距離を求める実験を行なったが、この実験では無刺激性の煙の中ですべ、刺激性の煙中では、煙濃度がある値以上になると急激に見透し
距離が低下することを図2に示す。これは、判断するようにする内容により閲覧者が異なることを示したものであり、個の刺激性のために誤差が激しく流れ出て、誘導灯の文字がゆがんで見えるためである。これに対し誘導灯の存在の有無だけの判断の場合、すなわち判断しようとする内容が単純な場合には流れて影響が少ない。

![図2 刺激性および無刺激性の規模での誘導灯の文字の判断限界の見通し距離](image)

4. 刺激性の建物での見通し距離に関する補足実験

これまでの実験で、建の刺激性が見通し距離に大きな影響を与えるのがわかったので、今回は、その与える影響を定量的に求めるための補足実験を行なった。すなわち、前述の実験では、誘導灯の“通常口”の文字を閲覧させたので、この結果から、肖の中での見通し距離への刺激性の影響についての一般的な結論を得ることはできなかった。そこで今回の実験では、視標にランダムな視覚を用い、刺激性の高い建の中での視力が被験度数により、どのように変化するかを測定した。さらに視力と視覚を低下させる流れて関係する“まばたき”の回数の変化についても測定を行なった。

4.1 実験方法

実験は、図4に示すように18m²の大きさの実験室で行われた。この実験室で木材のチップを電気灯でくん燃させ、刺激性の強い白煙を発生させた。建の発生速度は每分約0.05m³（流速係数）で行った。

![図4 実験装置図](image)

女性1名を含む12名の被験者に年齢20〜30歳で、視力1.0以上の標準視力を有している者を選んだ。実験は2つの条件下で行われた。すなわち、第1条件下では被験者は視野を刺激性の建から保護するために、十分にシールされたスキー用のゴーグルを着用しての実験であり、第2の条件下では、被験者は全くシールされないゴーグルを着用しての実験である。両ゴーグルは全く同一のものであるが、後のゴーグルのフレームには、数つかの穴が開かれており、刺激性の建が自由に目に入るように構成になっている。以後の記述については、この実験を“ゴーグルなし”としている。被験者は、被験実験の場合ともタイマーを手に当てた。これにより呼吸時の濃度を実験室内の濃度の1/4以下におさえることができる。

ゴーグルの前面は薄い黄色に着色されており、その透過率は視覚障害性の特性を測定すると約65%である。この透過率は、物理的な見通し距離にごくわずかな影響を与えることが考えられるので、この影響を除去するために両
実験共に、ゴールドを着装させた。
被験者はゴールドを着用し、1〜2分ごとに1回の割合で実験室に入り、ランダム視覚器表から4 m離れたところに置かれていた座る。の上に押ししつつスイッチあり、そのスイッチを押すことにより、ランダム視覚器の確認できる位置のランプが点灯する。同時に、その位置が実験室外で記録されるようになっている。被験者は30秒間に座って待った後、視覚器の確認できる位置を押ししつつで実験室外に出る。次に、もう一つのゴールドを着装し、再び実験室内に入り、この操作を繰り返す。

実験は、視覚器と同じ高さ（1.3 m）で連続測定しており、約15分の実験時間中、ゆっくり上昇しているのが記録された。

まばたき回数（回/分）の測定は、入室した最初の30秒間で行なわれた。検出率には医療用に開発された小型（3 mm×5 mm）のストレーナーを用い、これを目づりの皮膚に貼りつけた。まばたき回数の出力はトレーナーにより室外に送られ、パルスの波形として記録された。

実験室内の明るさは通常の照明状態にあり、また、被験者の位置から輝度計（モノルームランプメータ）により測定した視覚器の白色部分の輝度は、約150 cd/m²（明視度特性）であった。なおこれらの値は、煙が室内に充分しても5%程度しか吸収しなかった。これは明るい場合の光の大部分を散乱させ吸収しないためである。

4.2 結 果

煙の濃度を増加させたときの12名の被験者のみかけの平均視力の低下を図5に示す。濃度が減光係数で0.2 m⁻¹を越えるから視力は、濃度に対して直線的に低下している。煙中での視力の低下は、煙粒子により視覚が物理的に遮断されることと、煙の化学的性質、特に刺激性物質の介在するものである。刺激性の成分は、激しい流涙を生じさせ、これにより視力を低下させる。

図5 刺激性煙中での視力、およびまばたき回数の変化率と濃度

濃度が0.2 m⁻¹を越えてからの領域においては、ゴールドなしの場合の刺激性煙中での視力の低下率は、ゴールド着用時に比べ約15%大きい。このことは、煙の刺激性の影響は、煙濃度が濃くなるほど大きくなることを意味している。

一方、刺激性の煙の濃度とまばたき回数の関係は、図5に示す。ゴールドなしの場合、まばたき回数は、減光係数の増加とともに多くになっている。これに対してゴールド着用時のまばたき回数は、減光係数に関係なくほぼ一定値を示している。すなわち、減光係数の低い領域では、まばたき回数が低い、煙中よりもよくぶん低下している。これは、被験者の実験へのこころを変えると考えられる。

4.3 考 察

ゴールドの着装していないときの視力を、着装しているときの視力の比を求めた結果を図6に示す。減光係数が0.25 m⁻¹くらいまでは、両者の比がほぼ1.0である。

すなわち、この領域では、ゴールドの有無による視力の差はほとんど認められない。しかし、減光係数が0.25 m⁻¹を越えてからは、両者の比が1より急激に小さくなっており、減光係数が0.52 m⁻¹では、視力に最も著しい低下が見られる。これは、煙の粒子に遮断されることによって生ずるみかけの視力の低下、煙の刺激によって生ずる視力の低下の値に該当したことを示すものであり、これにより見出し濃度の範囲では、煙の刺激性によって生ずる視力の低下が、前者によって生ずるものを上まわることを意味している。

一方、ゴールドの有無によるまばたき回数の比が濃度係数により、どのように変化するかを示すもので図6に示す。まばたき回数の比が濃度係数の低い場合から少しずつ上昇をはじめ、濃度係数の増加とともに上昇率が大きくなっている。これらのことは、煙中を避難する際、ゴールドを着用することにより、煙の刺激性によって生ずる見出し距離の低下を防ぐことができる事を示している。

ゴールドの有無による視力の比と、ゴールドの有無によるまばたき回数の比との関係を図7に示す。まばたき回数比が1.5近くになると、燃の刺激性のために、目にかなりの痛みを感じる。これによる視力の低下がほとんど認められない。これにより、この程度の刺激では、視力の低下を及ぼすほどの誤がでていないためと考えられる。しかしそまばた

き回数の比が1.5～2.0の領域では、ゴーグルの有無による視力の比は、ばたきの回数比におおむね反比例して小さくなる。Weber-Fechner によると、刺激の強さは等比数列的に増加するときの感覚の大きさは、等差数列的に増加するとある。そこで、本実験における視力（S）と刺激の強さ（C）に対し Weber-Fechner の法則を適用すると、
\[S = A - B \log C \]
なる関係が成立するものと考えられる。

5. 結論

今回の実験で得られた主たる結論は、下記のとおりである。

（1）刺激性の煙の中での見透し距離において、刺激の強さによる視力の低下は、次式により示すことができる。

\[S = 0.133 - 1.47 \log C \] \[(3) \]

（2）刺激性の視力の低下は、刺激の強さによる視力の低下を防ぎ、避難行動を容易にさせることが確かめられた。また今回の研究では、刺激性の成分についての検討は行わなかったが、これらの成分と刺激性の相関についても今後研究する必要がある。

参考文献

（1）Kingman, F. E. T.: J. Appl. Chem. 3 (1953) 463
（2）Rasbash, D. J.: Fire, 59, 735, 175 (1966)
（3）Malhotra, H. L.: Fire Research Note, 651 (1967)
（4）Bono, J. A.: UL Bull. of Research, 56 (1978) 146
（5）神 忠久: 日本火災学会論文集 22 (昭47) 11
（6）神 忠久: 日本建築学会論文報告集 182 (昭46) 21
（7）神 忠久: 日本火災学会論文集 30 (昭55) 1
（8）神 忠久: 日本火災学会論文集 32 (昭47) 43
（9）神 忠久: 消防研究所報告 42 (昭51) 11
（10）神 忠久, 山田常夫: 昭和60年度日本火災学会研究発表会概要集 123 (1985), および "Fire Science and Technology" (英語集) 5 (1985) 91
（12）神 忠久: 火災誌 No. 134 (昭56) 26
（13）神 忠久: 消防研究所報告 40 (昭50) 6
（付録） 煙中の誘導標識の見通し距離について

煙中に輝度 $B_0(\text{cd/m}^2)$ の標識、およびそのすぐ後に輝度 $B_0(\text{cd/m}^2)$ の背景があり、標識により $V(m)$）だけ遠ざかるとその標識が確認できなくなる場合、標識および背景の光が観測者の目で到達するときの強度 B_c' および B_b' はそれぞれ、

$$B_c' = B_0 e^{-C_t V^2}, \quad B_b' = B_0 e^{-C_t V^2}$$

ここで、S : 標識の面積

C_t: 煙濃度を減光係数*で示したもの

で示される。ただし観測点から見た標識がほぼ点光源の発光体とみなせるものとする。次に標識と観測者の目を結ぶ立体的な広がり内にある煙粒子により散乱させる線下、室内の照明光の観測者の目を到達するときの強さを考えてみる。図1のように観測者から $X(m)$ のところの散乱体積 $S(X/V)^2dX$ 中の煙粒子による散乱させられる散乱光の強さは、この層層に入射する照明光の強さに比例する。したかつて、上光度密度 L の平行光線がこの層層に入射しているとすれば、ここであらゆる方向に散乱光

$$dB'' = \frac{1}{4\pi} \sigma_t L \left(\frac{S}{V} \right) e^{-C_t V^2} dX$$

となる。さらに入射光があらゆる方向から一様な強さで層層に入射している場合には、目で到達する全体の散乱光の光束密度 dB'' は、上光が入射光が一方向からだけの場合の散乱光の光束密度の平均値であるから、上光をさらに4π倍すればよい。すなわち

$$dB'' = \frac{1}{4\pi} \sigma_t (4\pi) L \left(\frac{S}{V} \right) e^{-C_t V^2} dX$$

$$= \sigma_t L \left(\frac{S}{V} \right) e^{-C_t V^2} dX$$

となる。またこの場合の L の値としては入射光の受光特性が余弦則に従うような照度計で測った各方向の平均の照度（E）の1/8の値を採用すればよい。すなわち

$$L = \frac{E}{\pi}$$

で示され、L は輝度の次元をもと、観測者の目と標識間のすべての部分で同じことが起こるので、目で到達する全散乱光の光束密度 B_c'' は

$$B_c'' = B_0 \left(\frac{S}{V} \right) e^{-C_t V^2} + \left(\frac{\sigma_t}{C_t} \right) L \left(\frac{S}{V} \right) e^{-C_t V^2}$$

とする。この散乱光 B_c'' は標識からの光、および背景からの光に重畳され目にはいる。したかつて観測者の目に到達する標識、および背景からの散乱光を含む光の全光束密度 B_c, B_b はそれぞれ

$$B_c = B_0 \left(\frac{S}{V} \right) e^{-C_t V^2} + \left(\frac{\sigma_t}{C_t} \right) L \left(\frac{S}{V} \right) e^{-C_t V^2} \quad \text{(付1)}$$

$$B_b = B_0 \left(\frac{S}{V} \right) e^{-C_t V^2} + \left(\frac{\sigma_t}{C_t} \right) L \left(\frac{S}{V} \right) e^{-C_t V^2} \quad \text{(付2)}$$

となる。付(1), (2)式の B_c, B_b は観測点での立体角 $\omega(= S/V^2)$ から受ける照度なので、照度 (B) = 輝度 (L) × ω、すなわち $L = B/\omega$ より観測点での標識、および背景のみかけの輝度 L_c, L_b はそれぞれ

$$L_c = \frac{B_c}{\omega} = B_0 e^{-C_t V^2}$$

$$+ \left(\frac{\sigma_t}{C_t} \right) L \left(1 - e^{-C_t V^2} \right) \quad \text{(付1)'}$$

$$L_b = \frac{B_b}{\omega} = B_0 e^{-C_t V^2}$$

$$+ \left(\frac{\sigma_t}{C_t} \right) L \left(1 - e^{-C_t V^2} \right) \quad \text{(付2)'}$$

で表わされる。したかつて、標識の視認限界時の対比 δ で

$$\delta = \frac{L_c}{L_b}$$

に \(I_0 = \text{目で到達する光の強さ} \)

$$I = \text{透過光強度}$$

$$L = \text{標識の輝度}$$

*減光係数（C_t）は次式で表される。

$$C_t = \frac{0.3}{l} \log_{10} \frac{I_0}{I} \quad \text{または} \quad I = I_0 e^{-C_t l}$$

ここで、l = 層層への入射の強さ

反射板形標識の場合、標識輝度（BE0）は強中の照明光の平均光束密度（L）と、標識の反射率（α）により定まる。すなわち

\[BE0 = aL \] または \[\alpha = \frac{BE0}{L} \] となる。

\[C_V = \ln \left(\frac{BE0}{L} \right) \]

実用標識では \[a \gg \delta \] なので

\[C_V = \ln \frac{a}{\delta} \]

となる。

(受付1985年7月19日)

新製品紹介

ツイン蛍光ランプ38 W 3灯用照明器具
《スクエア 450 シリーズ》

松下電工株式会社では、このたびコンパクト・ハイパワー・高演色性新光源「ツイン蛍光ランプ36 W」の採用により、天井空間をすっきりと構成したい店舗などに適した、コンパクトで無方向性の照明器具《スクエア 450 シリーズ》を発売した。

下記のようなランプの特長を生かして、各種用途に応じた商品を開発し、従来の器具感覚を変える。

ツイン蛍光ランプ36 W 3灯用《スクエア450シリーズ》の特長は、

(1) コンパクトで無方向性（450 mm×450 mm）で、天井をすっきりと見せ、空気の広がり感が得られる。

(2) 40 W 3灯直管蛍光ランプ用器具とはほぼ同じ明るさで、器具サイズは約1/3となり、非常にコンパクト。

(3) サーマルコートシリーズ8点に加え、深枠シリーズ、方円形シリーズなど、全16品目に及ぶ豊富な品揃えで幅広い用途に対応している。

ツイン蛍光ランプ38 W と従来の蛍光ランプとの比較

<table>
<thead>
<tr>
<th>ランプ長さ (mm)</th>
<th>光束 (lm)</th>
<th>Ra</th>
<th>色温度 (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFL36 EX</td>
<td>410</td>
<td>2,900</td>
<td>84</td>
</tr>
<tr>
<td>FL 40 SS. EX/37</td>
<td>1,198</td>
<td>3,350</td>
<td>84</td>
</tr>
<tr>
<td>FL 40 SS. W/37</td>
<td>1,198</td>
<td>3,100</td>
<td>63</td>
</tr>
<tr>
<td>FL 40 SS. W-F/37</td>
<td>1,198</td>
<td>2,900</td>
<td>74</td>
</tr>
</tbody>
</table>

（問い合わせ先 松下電工株式会社電材事業本部 マーケティング部照明営業企画グループ 〒571 大阪府門真市門真1048 電話 06-908-1609）