3

低 E/P₀ における Hg/Ar 混合ガス中の電子スオームパラメータ

O 沢田 貞夫

（北海道大学 工学部）（北海道大学 医療技術短期大学部）（北海道大学 工学部）

1．はじめに

筆者らは、Hg/Ar 混合ガス中の電子スオームパラメータの解析にあたり、
ベニング及び累積電離を考慮したボルツマン方程式を提案し、E/P₀ が 5～200 V/cm Torr の
範囲で α/E (α: 電離係数、E: 電界強度) の解析を行なった。その結果は実測値のパラツキ内で一致し、この解析法が
基本的には妥当であることが示された。本報告では、応光ランプの陽光柱にあらわれる E/P₀ 付近で、電子数密度 n をパラメータとした場合の、α/E 及び 253.7nm の放射を行なう 6³ P₁
共鳴準位への気体周波数について解析を行なった結果について述べる。

2．解析方法

解析はベニング電離及び累積電離を考慮したボルツマン方程式を用い前報告と同様の方法で、E/P₀ = 0.2
～0.5 V/cm Torr の定常状態のもとで行なった。応光ランプの陽光柱では Ar が 2 Torr, ランプ電流 I = 0.3A で、E = 0.68V/cm、
n = 2.3 x 10¹¹/cm³ になると報告されている。本解析では n を独立
立なものとせず、Q₀₁/n (Q₀₁: 累積電離を経ずに Hg⁶⁺ が崩壊する
断面積) と (5 x 10⁻³⁰, 1 x 10⁻³⁰, 5 x 10⁻³¹ cm²) とした。Q₀₁ は 2.5
× 10⁻¹⁹ cm² と仮定すれば、n はそれぞれ 5.0 x 10¹⁰, 2.5 x 10¹¹,
5.0 x 10¹¹/cm³ に相当する。Hg/Ar の混合割合 (K = Hg/(Hg+Ar)) は、Ar を 2.5 Torr のもとで、
温度 T (℃) を変えこれらに対応する Hg の蒸気圧を与え、これをもとに決定される。本解析
では、Hg 蒸気圧に対応する温度に対しても論じた。

3．解析結果

図 1 に K = 2 x 10⁻³ (39℃) に対する 6³ P₁ (253.7 nm 放射) 及び 6¹ P₁ (185 nm 放射)
共鳴準位への気体周波数 R_{ex} E/P₀ (点線)、及び (2) 電子が電界より得るエネルギーに対
する気体周波数に発生されるエネルギーの関係を示す。6³ P₁
への気体周波数を比較的低 E/P₀ に大きく
値を示す。図 2 は 6³ P₁ への R_{ex} E/P₀ を示す。

R_{ex} は E/P₀ と T が
大きく変わる程度増加する傾向が示されたが、n を変えても変化しなかった。
図 3 は K をパラメータにして
α/E に対し Q₀₁/n を示す。n が增加
していくと α/E は、はじめ (n が
小) 増加したが、n が大きくなる
と一定の値を示した。

(2) 沢田他: 昭和 51 年, 照学
東京支部大会 No 4 (3) 長谷部他:
照学誌 62巻9号 昭和 53年

Electron swarm parameters in Hg/Ar mixtures at low E/P₀
Sadao Sawada, Yosuke Sakai, Hiroaki Tagashira