1. はじめに
筆者らは照明空間における光の流れを可視化する立場から、従来の照度計算書の見直しを進めている。今回の Stokes の定理による「面積分から線積分への変換」を用いた照度計算法について検討したので以下報告する。\(1)\)

2. Stokes の定理による照度計算
照明 L の平面光源による点 P \((x_p, y_p, z_p)\) の照度 E は点 P にもうけた被照面が十分小さい場合 (1) 式で表される。

\[E = L \int \cos \theta_p \cos \theta \, ds / r^2 \] \(1)\)

\[\hat{r} = \frac{(x - x_p) \hat{x} + (y - y_p) \hat{y} + (z - z_p) \hat{z}}{r} \]

\[r^2 = (x - x_p)^2 + (y - y_p)^2 + (z - z_p)^2 \]

\[\hat{n_p} = \hat{x} \cos \alpha_p + \hat{y} \cos \gamma_p + \hat{z} \cos \zeta_p \]

\[\hat{n} = \hat{x} \cos \alpha + \hat{y} \cos \gamma + \hat{z} \cos \zeta \]

\[\hat{r} = \frac{\hat{x} \cos \alpha_p + \hat{y} \cos \gamma_p + \hat{z} \cos \zeta_p}{r} \]

\[r = \frac{(x - x_p) \hat{x} + (y - y_p) \hat{y} + (z - z_p) \hat{z}}{r} \]

\[\hat{n_p} = \hat{x} \cos \alpha_p + \hat{y} \cos \gamma_p + \hat{z} \cos \zeta_p \]

\[n = \cos \theta_p \cos \theta = [-\hat{r} \cdot \hat{n_p}] \]

\[r = \frac{(x - x_p) \hat{x} + (y - y_p) \hat{y} + (z - z_p) \hat{z}}{r} \]

\[r^2 = (x - x_p)^2 + (y - y_p)^2 + (z - z_p)^2 \]

微小面 Q との距離である。\(\hat{r} \) は \(r \) の単位ベクトルで \(P \) から \(Q \) 向かうものとする。角 \(\theta_p \)
は被照面 \(P \) の法線方向のベクトル \(\hat{n_p} \) と距離ベクトル \(\hat{r} \) とのなす角。角 \(\theta \) は光源の微小面 Q の法線方向のベクトル \(\hat{n} \) と距離ベクトル \(\hat{r} \) とのなす角である。

\(1) \) 式の照度 E はベクトル関数 \(\hat{r} \) と光源の微小面 Q のベクトル \(\hat{n} \) と内積で表される。

\[E = L \int [\hat{T} \cdot \hat{n}] \, ds \] \(2)\)

\[\hat{T} = [\hat{n}_p \cdot \hat{r} / r^2] [-\hat{r} \hat{r}] \] \(3)\)

ここで \(\hat{T} \) を \((3) \) の様に置いて \((2) \) 式の面積分に Stokes の定理を適用すると、平面光源による直射照度 E は \((4) \) 式となる。「」光源の境界 C に沿った線積分による直射照度が求められる。\((4) \) 式は \(x, y, z \) の軸方向の照度 \(E_x, E_y, E_z \) を成分とする照度ベクトル E と \(\hat{n}_p \) との内積になっている。

\[E = L \int [\hat{T} \cdot \hat{n}] \, ds \] \(2)\)

\[\hat{T} = [\hat{n}_p \cdot \hat{r} / r^2] [-\hat{r} \hat{r}] \] \(3)\)

\[E = \hat{n}_p \cdot \hat{E} = \hat{n}_p \cdot \left(x \hat{E}_x + y \hat{E}_y + z \hat{E}_z \right) \] \(4)\)

\[E_x = (L / 2) \int \left(\frac{z - z_p}{r^2} \right) dy - \left(\frac{y - y_p}{r^2} \right) dz \] \(5)\)

\[E_y = (L / 2) \int \left(\frac{x - x_p}{r^2} \right) dz - \left(\frac{z - z_p}{r^2} \right) dx \] \(5)\)

\[E_z = (L / 2) \int \left(\frac{y - y_p}{r^2} \right) dx - \left(\frac{x - x_p}{r^2} \right) dy \] \(5)\)

次に、ベクトル関数 \(\hat{T} \) を \((6) \) 式で与える。

\[\hat{T} = \frac{\hat{r}}{r^2} [\hat{r} \cdot (-\hat{n}_p)] \] \(6)\)

Some Mathematical Approaches of Illuminance Calculation by Contour Integration
Takasi Higo, Yukitaka Shinoda, Yoshio Sasaki
Gurevich, Gershunの見いだした関係式(7)を用いると(6)式は(8)式となる。
\[
(1/2)\nabla \times (\hat{r} / r \times (-\hat{n}_p)) = \hat{r} / r \times (-\hat{n}_p \times \hat{r}) \quad (7)
\]
\[
T = (1/2)\nabla \times \{ \hat{r} / r \times (-\hat{n}_p) \} \quad (8)
\]
ここでstokesの定理を適用すると無次元Eは(9)式となる。
\[
E = L (1/2) \int \{ \hat{r} / r \times (-\hat{n}_p) \} \cdot \hat{n} \, ds
\]
\[
= L (1/2) \int \{ \hat{r} / r \times (-\hat{n}_p) \} \cdot \hat{d}l
\]
\[
= L (1/2) \int (-\hat{n}_p) \cdot [\hat{d}l \times (\hat{r} / r)] \quad (9)
\]
ベクトル(\(\hat{d}l \times \{ \hat{r} / r \} \))は大きさが被照面Pと光源の外周dlとでつくる錐面の狭角
\(d \beta \)であり、方向は錐面に垂直な内向きのベクトルである。(\(\hat{d}l\)を時計方向にとってある
錐面の方向は内側を向く。) そこで錐面に垂直な外向きの単位ベクトルを\(\hat{m} \)とすると、
(8)式は(10)式と書ける。
\[
\hat{m} \times d \beta = [\hat{d}l \times (\hat{r} / r)] \quad (10)
\]
\[
E = L (1/2) \int [\hat{n}_p \cdot \hat{m} \times d \beta]
\]
\[
= (L / 2) \int \{ \hat{n}_p \cdot d \beta \cos \delta \} \quad (11)
\]
\(\hat{m} \)と\(\hat{n} \)との余弦方向を\(\cos \delta \)とすると(10)式は(11)式となる。
\[
E = (L / 2) \int [\hat{n}_p \cdot \hat{m} \times d \beta] = (L / 2) \int [\hat{d}l \times (\hat{r} / r)]
\]
\[
\cos \delta = [- \hat{n}_p \cdot \hat{m}] \quad (12)
\]
(12)式はいわゆる錐面積分の法則として知られたものである。次に(9)式にGrevitch
が示した(14)式を用いると、無次元Eは(15)式となる。
\[
\hat{r} / r = \nabla (\ln r) \quad (14)
\]
\[
E = L (1/2) \int (-\hat{n}_p) \cdot [\nabla (\ln r) \times \hat{d}l]
\]
\[
= (\hat{n}_p) \cdot [\nabla \times (L / 2) \int (\ln r \, \hat{d}l)]
\]
\[
= (\hat{n}_p) \cdot D \quad (15)
\]
\(\hat{D} \)はMoonのpharosageベクトルである。\(\hat{D} = \nabla \times \hat{A} \)とすると
\[
\hat{A} = L (1/2) \int (\ln r \, \hat{d}l) \quad (16)
\]
関数\(\hat{A} \)はGrevitchの導いたvector potentialである。無次元Eは\(\nabla \times \hat{A} \)と\(-\hat{n}_p \)との内積にな
る。
3. おわりに
ベクトル関数\(\hat{T} \)についてまとめて以下の二通りに書ける。
\[
(1) \quad \hat{T} = (\hat{r} / r^2) \{ \hat{r} \times (-\hat{n}_p) \}
\]
\[
(2) \quad \hat{T} = \{ -\hat{r} \times r \} \{ \hat{n} \cdot \hat{r} / r^2 \}
\]
(1)の場合は錐面積分の公式、Grevitchのvector potential \(\hat{A} \)が導きだされ、(2)
の場合は距離の逆二次乗を線積分する無次元計算法が導き出される。この方法は無次元のベクトル
的扱いが簡単となり、光の流れを可視化する上で有用な方法になると考えている。

参考文献
(1) 例えば、尾本：照明計算、p94
(2) 神坂：照明学誌、vol.66.no.4、p107(1982)
(3) E.M. Sparrow, J. Heat Transfer: vol.85.no.2、p81(1963)
(5) 菅原：平成3年度照明学会全国大会講演予稿集、p97