【はじめに】
九州大学では、CIE（国際照明委員会）のIDMP（国際昼光測定プログラム）に従って研究クラスの測定所を設置し、昼光と日射に関するデータの連続的測定を1990年夏より開始している。その統計的処理を行うためには、品質管理の手法を早期に確立する必要がある。本報では、1992年に本学で測定したデータの内、照度と放射照度（日射量）に関する基本量について、若干の品質管理テストを行った結果を報告する。

【昼光測定のための推奨ガイドについて】
CIEの技術委員会TC-3.07は、IDMPのために昼光測定のための推奨ガイド [12]（以下、ガイドと称す）を準備している。そのPart-Cにデータの品質管理に関する章を設けている。以下にその要旨を記す。
すなわち、品質管理の目的は、サンプラーの器形、センサーの汚れ、校正のずれ等、通常のセンサーのトラブルを初期の段階で発見することである。このテストは、太陽高度が4°以上でグローバル放射照度が20W/m²以上の時に実施するとしている。また、テストの簡略化のために1分毎に測定したデータの10分間の平均値を用い、これが合格した時は、この10分間に含まれる1分データは全て合格する見なすとしている。
今回、筆者らが行った品質管理は、ガイドのTest-1とTest-2に準拠したもので、診断フラッグを付けずにそれぞれのテストに関する合格率を求めた。

【測定データ】
品質管理を行ったのは、九州大学の測定所における1982年1月～12月の1年間の内、欠測した日を除いた347日間の測定データである。ただし、被り等のため一時欠測した日も含んでいる。測定は1分毎に24時間行っており、そのデータ数は年間で50万組以上となる。よって、統計的処理の負担を軽減すると共にデータのばらつきを均すため、ガイドによる通り、1分データの10分間の平均値を使用した。
品質管理を行うにあたり、これもガイドによる通り、

Data quality control for daylight measurement
- Part 1: method and result of the test -
Shinya Kojo, Hiroshi Nakamura, Yasuko Koga, Satoshi Sata

表1 10分平均値のテスト合格データ数（1992年）

<table>
<thead>
<tr>
<th></th>
<th>照度 (Evg,Evd,Evs)</th>
<th>放射照度 (Eeq,EEd,Ees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全データ数</td>
<td>22,009</td>
<td>22,009</td>
</tr>
<tr>
<td>テスト1</td>
<td>22,009</td>
<td>22,009</td>
</tr>
<tr>
<td>合格データ数</td>
<td>(100.0%)</td>
<td>(100.0%)</td>
</tr>
<tr>
<td>テスト2.1</td>
<td>20,666</td>
<td>20,666</td>
</tr>
<tr>
<td>合格データ数</td>
<td>(93.9%)</td>
<td>(93.9%)</td>
</tr>
<tr>
<td>テスト2.2</td>
<td>18,862</td>
<td>18,620</td>
</tr>
<tr>
<td>合格データ数</td>
<td>(85.7%)</td>
<td>(84.6%)</td>
</tr>
</tbody>
</table>

図1 グローバル照度の実測値と計算値の相関

図2 グローバル放射照度の実測値と計算値の相関
まず1分データから太陽高度4°以上のものを抽出し、これを10分毎に平均した。さらにこの中からグローバル放射照度が20W/m²以上のもを抽出した。全データ数は22009個である。

【データ品質管理】

品質管理テストは、グローバル照度(Evg)、全天空照度(Evd)、直射照度(Evs)及びグローバル放射照度(Eeg)、天空放射照度(Eed)、直達放射照度(Ees)の6つの基本量に対して行った。

・テスト1

ガイドのTest-1に従って、データの絶対値の範囲の検討を行った。太陽高度00°と太陽放射照度はそれぞれ、ETI = 133.7 klx、ETR = 1382 W/m² とした。

テスト1: 0 < Eva < 1.2 ETI
0 < Evd < 0.8 ETI
0 < Eva < ETI
0 < Eev < 1.2 ETR
0 < Eev < ETI
0 < Eva < Eev < EETR

・テスト2-1及びテスト2-2

ガイドのTest-2に従って、拡散成分と直達成分から求めたグローバル成分の計算値と、実測したグローバル成分の値との比較を行った。

テスト2-1: Evs·sin H + Evd = Eva ± 25%
Ees·sin H + Eed = Eev ± 25%
テスト2-2: Evs·sin H + Evd = Eva ± 15%
Ees·sin H + Eed = Eev ± 15%
（H: 太陽高度）

グローバル照度とグローバル放射照度について、計算値と実測値との相関を図1、図2に示す。テストに合格していないデータは、実測値よりも計算値の方が小さい範囲に分布している。

【結果】

各テストの合格率は表1に示す通りである。テスト1については、全てのデータが合格した。テスト2-1に関しては、年間を通した合格率は照度、放射照度ともに93.9%である。テスト2-2については、同じく照度が85.7%で放射照度が84.6%である。

次に、照度については5 klx、放射照度は50W/m²毎に分類した。テストの合格率とデータ数の頻度分布を図3、図4に示す。照度に関しては50～75klxの範囲、放射照度については500～650W/m²の範囲を中心に合格率が低くなっている。データ数が多い、照度の5～15klxの範囲や放射照度の50～150W/m²の範囲では、比較的合格率が高い。

おわりに

今回は、昼光と日射の6つの基本量に関してのみテストを行った。今後は、他の測定値に関しても品質管理の手法を検討し、データの有効利用の可能性を探っていく考えである。

本研究は、科学研究費総合研究A（No.0330205）の助成を受けた。ここに感謝の意を表する。

【参考文献】