18. ネオン放電管用非対称波形インバータ

武田 勝 渡部 薫 阿部 英治
（ハリソン電機株式会社）

1. はじめに

ネオン放電管を高周波放電させると、発光の明暗の相が移動し、それを含む速さが増大する。しかし、ランプ駆動波形の正の振幅と負の振幅を変える非対称波形で点灯させると、そのいずれかが大きくなるほど振幅の速度が大きくなり、内製波形杖を設定できなくなる。

そこで、放電管の高周波インバータに用いられるロイザー回路を応用して非対称波形を得ることの検討を行った。

2. 実験回路

図1は通常のロイザー回路で、1次巻線P1とP2は同一ターン数で巻かれている。この巻線P1、P2の巻線数のバランスを変えても非対称波形は得にくい。

今回の実験は、図2のように通常のロイザー回路のトランスT内外に補助巻線L0を設けた回路を用いて、その補助巻線L0とトランスTの1次巻線P1、P2のバランスを変え、波形の変化を観察した。波形の対称率を下記のように定義した。

\[
\text{対称率} = \frac{V2 - V1}{V1} \times 100(\%)
\]

3. 実験結果

トランスTの補助巻線L0と波形の対称率の関係を図3に示す。補助巻線L0を変化させることにより、非対称波形を得ることができた。

また、グラフの実線部は移動続の発進を視認できず、適切な波形の対称率を見出すことができた。

（参考文献）（1）上野、青野：ネオン放電管の高周波点灯における移動続について

The asymmetrical sine-wave inverter for neon discharge lamps

Masaru Takeda Shigeru Watanabe Eigi Abe

--- 64 ---