1. エリプソメトリーによるタンクステンの複素屈折率測定

佐藤歩† 柏木孝仁† 関根征士† 大河正志†
（†新潟大学工学部）（†新潟大学大学院自然科学研究科）

1. はじめに

白熱電球は安定性が欠如で遊戯色に優れているが、ランプ効率が低く寿命が短い。一方、高効率・長寿命白熱光源として、マイクロキャビティー光源やクラスター光源が期待されている。しかし、これら光源の設計・開発にはそれらの動作温度（2000〜6000K）におけるタンクステンなどの発光体の複素屈折率が必要であるが、そのような高温領域における測定および解析データは得られていない。そこで、著者はエリプソメトリーを用いて高温タンクステンの複素屈折率を測定することを検討している。今回は、基礎実験として常温タンクステンの複素屈折率を測定し、測定精度の向上と装置の改良について検討したことを報告する。

2. エリプソメトリーの原理

エリプソメトリー（偏光解析法）の概要を図1に示す。光が物体（本研究ではタンクステン）に斜入射したとき、入射面での振動成分（p偏光、電界：Es）に対する複素振幅反射率は、それに垂直な成分（s偏光、電界：Es）と異なる。このような現象を用いた光学測定はエリプソメトリーである。この原理によれば、Es(p偏光の反射電界)とEs(s偏光の反射電界)の振幅比および位相差から複素振幅反射率が導出される。まず、次式から入射光の偏光状態χiおよび反射光の偏光状態χrを求めめる。

\[\chi_i = \frac{E_{si}}{E_{pi}} = a_{si} \exp(j\delta_i) \] …(1)
\[\chi_r = \frac{E_{sr}}{E_{pr}} = \frac{R_s \cdot E_{si}}{R_p \cdot E_{pi}} = \frac{R_s}{R_p} \cdot \chi_i \] …(2)

ただし、a_{si} と a_{pi} それぞれEsとEsiの振幅、δ_{si} はEsとEsiの位相差、R_{p} とR_{s} それぞれp偏光とs偏光の複素振幅反射率を表し、j=1/2である。入射光が45°直線偏光であれば、a_{si}=a_{pi}、δ_{si}=0 となるのでχ_{i}=1である。このとき、χ_{r} は(2)式よりR_{p} とR_{s} の比で表される。また、複素振幅反射率R_{p} とR_{s} をそれぞれ

\[R_p = r_p \cdot \exp(j\delta_p) \]
\[R_s = r_s \cdot \exp(j\delta_s) \] …(3)

と表せば、χ_{r} は

\[\chi_r = \frac{R_s}{R_p} = \frac{r_s}{r_p} \cdot \exp\{j(\delta_s - \delta_p)\} = \cot\psi \cdot \exp(-j2\Delta) \] …(4)

と書き換えられる。ここで、r_{p}/r_{s} = \tan\psi、\delta_{p} - \delta_{s} = 2\Deltaである。このΔ、\psi はエリプソメトリーから測定される。また、測定値Δ、\psi と複素屈折率n_{c}=n-jk の関係については、A.Fresnel の反射・屈折の関係式から、

\[n = \frac{n_0 \sin\phi \tan\phi \cos2\psi}{1 + \sin^2\phi \cos2\psi} \]
\[k = \frac{n_0 \sin\phi \tan\phi \sin2\psi \sin2\Delta}{1 + \sin 2\psi \cos2\Delta} \]
\[= n \tan 2\psi \sin 2\Delta \] …(5)

として導出される。ただし、n_{0}(本研究では空気)は媒質の屈折率、\phi は入射角(図1)を表す。

3. 測定装置の概要

光源には、出力10mW、波長632.8nmのHe-Neレーザーを用いた。偏光子・検光子には、消光比10^{-5}、透過率90%のグランクトンメソプラズムを用いた。位相子には、透過率99%以上の1/4波長板を用いた。光検出器には、測定範囲3nW〜100mWの光パワーメーターを用いた。偏光子、検光子および位相子の方位角調整には、それぞれ精度1°のマイクロメーターを用いた。入射光\phi の読取には、精度1°の回転ステージを用いた。被測定タンクステンは、回転ステージ上にセットした。

Measurement of Complex Index of Refraction of Tungsten by Ellipsometry
Ayumu Sato, Takahito Kashiwagi, Seishi Sekine, Masashi Ohkawa
4. 測定結果

純度99.95%のタンクステン（50mm×50mm×0.10mmの板状）を測定した。そのデータのうち、入射角θ=40°の測定値を表1に示す。

各回の測定は、それぞれ異なる4つの消光位置（光出力が最小となる偏光子の方位角と検光子の方位角）を測定した値の平均値である。表1から、Δのばらつきは最大17°、ψのばらつきは最大4°-45°である。これら

5. 測定精度向上の検討

複素屈折率n, kの値を有効数字3桁まで求めるために必要なφ, Δ, ψの精度について検討した。

今回使用した測定装置（図1）においては、φの測定精度は40°±1°と推定される。そこで、n, kがφの値によってどれだけ変わるかを解析し、その結果を図2に示す。図2から、φの変位1°に対して、n, kはともに0.003変位すると評価される。

次に、φに誤差がないものと仮定して、Δとψに対するn, kの変位を検討した。解析では、表1を参照してφ=40°における消光位置のΔとψの値をそれぞれ、85°と40°に仮定した。図3と図4にΔ, ψの変位に対するn, kの値を表す。Δ=85°, ψ=40°におけるnとkの値は、それぞれn=3.106（図3グラフ中央）とk=3.059（図4グラフ中央）である。図3から、nはψの変位よりもΔに強く依存している。また図4から、kはnとは反対に、Δの変位よりもψに強く依存している。図3と図4から、nとkはともに有効数字3桁まで求めると、Δ, ψとも読み取り精度は1°以上必要である。また、現在の装置では、光源の出力が10mW、光検出器の最大検出能が3nWであるが、偏光子と検光子の消光比は10^3であるため、消光位置の光出力は1nWとなり消光位置を正確に読み取れない。この対策は、光源の出力を向上させること、および光検出器の感度を向上させることである。このように改善することによって、Δとψの読み取り精度1°まで期待できる。

上記の解析結果に基づいて、現在、高精度のエリプソメトリー・システムを設計・構築中である。

6. まとめ

今回、エリプソメトリーを用いてタンクステンの複素屈折率を測定する基礎実験を行った。その結果、装置を改良することによって、有効数字3桁の精度で測定できるとの知見が得られた。

7. 参考文献

1) 柏木孝仁他：平成11年度照明学会全国大会 No.1

図2. φに対するn, kの変位

図3. Δ, ψに対するnの変位

図4. Δ, ψに対するkの変位