Development of High Productive Micro Solder Flip Chip Bonding Process

Daisuke Sakurai*, Takatoshi Osumi*, Kazuya Ushirokawa*, Takashi Nakamura**, and Takatoshi Ishikawa**

*Production Engineering Laboratory, Panasonic Corporation 2-7 Matsuba-cho, Kadoma City, Osaka 571-8502, Japan
**Development Center, Panasonic Factory Solutions Co., Ltd., 1375 Kamisukiawara, Showa-cho, Nakakoma-gun, Yamanashi 409-3895, Japan

(Received July 30, 2012; accepted November 8, 2012)

Abstract
To increase the productivity rate of the 3 dimensional system in package (SiP) used for electronics devices such as cloud computing and smart phones, the authors have developed a new micro solder flip chip bonding process. By this means, a higher-function and lower-cost SiP can be achieved. In the conventional process, more than 10 seconds of bonding time are needed to control metal oxide film of solder bump and the warpage of a thin chip. The paper suggest a flip chip process should be divided into the following processes; 1) the temporary bonding process i.e. the molten solder is rapidly diffused into an electrode under an inert gas atmosphere, and 2) the final joint process i.e. the solder bumps of multiple chips are all together bonded, while the warpage of chips are corrected under reductive gas atmosphere and pressure. The authors have verified that even when the fluxless process is used, such divided mechanism can shorten the time needed for bonding an IC chip with pitch and thickness of each 50 μm to 0.25 seconds.

Keywords: Flip-chip Bonding, Micro Solder, 3D-SiP, CoW, CoC

1. Introduction
With a recent rapid growth of the market of mobile devices such as cloud computing and smart phones, a higher-performance, smaller and lower-cost semiconductor package is required. To respond them, a package known as 3D-SiP (3 dimensionally system in package) is widely used. As shown in Fig. 1, the 3D-SiP is a system that the 3D semiconductor is stacked to the Si interposer. High productivity is the key feature to reduce assembly costs, especially in the flip chip bonding process. Therefore the flip chip bonder has changed from the system bonding chips on a resin board (Chip on Board; CoB) to ones on a large diameter silicon wafer (Chip on Wafer; CoW).[1]

On the other hand, micro bumps with a pitch of less than 50 μm are indispensable for the interconnection between chips to satisfy the demand of high-speed transmission via several thousands of signal lines. However, it is difficult to use the conventional bumps such as gold stud bumps and solder bumps because the former needs high equipment investment and the latter may cause short between adjacent bumps.

Therefore a Cu pillar post bump covered with solder has become popular.[2–5] This structure can reduce amount of molten solder and prevent short. However, the high-speed flip chip bonding process for thin chips has the following problems;

1) The solder oxide film which may cause joint failure should be removed, but it is difficult to use flux because it may remain as a flux residue. Therefore it needs long bonding time to physically remove the oxide film with vibration and pressure.

2) In a case of thin chip, after the bonding tool is released with molten state of solder in the bonding process, the warpage of the chip becomes larger because the coefficients of thermal expansion of constituent materials of the chip are different and the surface tension of a small amount of solder can-
not absorb the warpage. As the result, an open failure in the joint part occurs and thus it needs long time to cool the solder joint down under pressure until it solidifies.

For these reasons, more than 10s is needed to bond a chip in the conventional way.

To solve these issues, the authors have developed a new high-producing-flip-chip-bonding-process controlling the solder oxide film and the warpage of the chip. This study describes the newly developed micro solder flip-chip bonding process which can shorten the bonding time from 10s to 0.25 seconds, corresponding with a thin chip (50 μm thick) with a pitch of 50 μm for 3D-SiP.

2. Establishment of Divided Micro Solder Flip Chip Bonding Process for High Productivity

2.1 Divided micro solder flip chip bonding process

To realize high productivity, the authors suggest that a micro solder flip chip bonding process should be divided into two processes consisting of the temporary bonding process for pursuing a high speed bonding and the final bonding process for ensuring the reliability. This process is defined as the divided flip chip bonding process which enables a high speed bonding.

Figure 2 shows an example of the bonding process for 3D-SiP by using the divided bonding process.

a) Firstly, the heated first layer of a 3D stack chip is bonded to a wafer with a high speed bonder. This process is defined as the temporary bonding process purposed to reduce the warpage of a chip under the stackable level. In this process, the solder nearby the electrode pad should be partially alloyed and the solder able to remelt should be remained.

b) Next, the second layer of the 3D stack chip is temporarily bonded one by one in the same way as the first layer. Over the third layer the temporary bonding is repeated. Since the solder remained in the joint of the lower layer of the chip remelts and absorbs the warpage of the chips and the variation in the height of the chips, it becomes easier to stack chips.

c) Finally, multiple stacked chips are pressed by heat on whole set of a wafer until all pins of solder joint become intermetallic compound (IMC) in order to ensure the electric continuity between chips. The time needed for this process doesn’t affect the production lead time because of batch processing. Moreover, clearances between the stacked chips are sealed with under-fill resin.

2.2 Micro-bumping technology for CoW

It is considered that the solder capped Cu pillar bumps should be used as the micro bumps on the surface side of chip. Electroless nickel immersion gold plating, in our opinion, is one of the best ways to be used as the bumps on the wafer and on the back side of the top chip. It is because of three reasons. One is because no remolten process is needed during the wafer is being laid on the heated stage. The second one is because the back-side of the bumps directly touches the high-temperature bonding head. The other one is because no exposure masks and no big spaces for production lines are needed.

2.3 Flux-less high speed temporary bonding process for thin chips

The authors have considered that the surface of solder should be controlled and that the molten solder should be rapidly diffused into the Ni electrode for high speed bonding. Especially, the authors have focused on the conchoidal Ni₃Sn₄ phase on the electrode.[6] If the solder wets and the IMC is formed all over the electrode, it is considered that wetting force of solder should reduce the warpage of a chip even after the bonding tool is released. This is why the paper has studied the effects of plasma cleaning process and the influence of the diameter of wetting area on the interconnection in temporary bonding process.

2.4 Final bonding process

The final bonding process has 2 purposes. One is to assure the electric continuity between all interconnection pins and the other is to reduce the warpage of a chip less than that after temporary-bonding. To assure the electric continuity, the authors have considered the oxide film which is formed after temporary bonding process should be removed by reductive gas, which penetrates into a narrow clearance between the top and bottom chips. The authors suggest the final bonding process as follows. Firstly, SiPs after temporary-bonding process are put inside a batch chamber. After reducing a pressure to a vac-
uum, they are heated inside the chamber containing reductive gas. The function of reductive gas is as same as flux.[7] When temperature of solder rises over a boiling point of reductive gas, the tin oxide starts to be reduced. After that, when it reaches over the solder melting point, the unmolten solder joints after temporary-bonding are molten and transformed into IMC.

Moreover, to correct the warpage of chip, the authors have considered the bonding pressure should be needed. Therefore the paper has studied the necessity for the reductive gas and bonding pressure in the final bonding process.

This discussion in the paper is focused on the development of the flux-less high speed temporary bonding process for thin chips and the development of a batch final bonding process to assure the joint quality.

3. Experimental Method

3.1 Test vehicle structure

Table 1 shows a specification of test vehicle. The evaluated structure is CoC (chip on chip). A 50 μm-thick chip is bonded to the underneath chip having thickness of 775 μm thick. Both chips are interconnected with 5,184 micro-bumps placed in 72 rows and 72 columns with a pitch of 50 μm. The interconnection has 4 daisy chains. The number of pins in a daisy chain is 1,296.

3.2 The test vehicle fabrication process

Figure 3 shows a fabrication process of the test vehicle. Firstly, the surface of the bumps of both chips is cleaned by Ar plasma of the plasma cleaner in order to remove the solder oxide film and organic contamination formed in the micro-bumping process. Next, the top chip (see Fig. 3(a)) was temporary-bonded by heat on the bottom chip aligning the bump position. A 300 mm-wafer-supported flip chip bonder is used in this process to achieve bonding accuracy of ± 3 μm/3σ. The temporary-bonded CoC is then final-bonded by heat press under reductive gas with a batch vacuum reflow oven. Formic acid gas, which boiling point is 373 K, was used as reductive gas. Figure 4 shows a thermal profile of the interconnection in the process.

3.3 Evaluation item

1) The validity of plasma cleaning on the surface of solder

The surface of solder bump was analyzed by Auger analysis. The thickness of the tin oxidation film was compared the plasma-cleaned bump to the untreated one. Moreover, the authors have compared the bonding status of the cleaned chip to that of the untreated chip. The bonding status is observed by X-ray.

2) The status of interconnection after temporary-bonding

The height of the curved chip was measured in the 3.5 × 3.5 mm area with 3 dimensional laser displacement meter. The authors define the difference between the maximum height of the curved chip from the reference plane and the minimum height of that as the warpage. To catch the phe-

![Fig. 3 The cross-sectional illustration of interconnection in fabrication process of the test vehicle: (a) plasma cleaning, (b) temporary-bonding, (c) final bonding.](image)

Table 1 Specifications of the test vehicle.

<table>
<thead>
<tr>
<th>Chip</th>
<th>Top chip</th>
<th>Bottom chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC size</td>
<td>4 × 4mm, 50μm thick</td>
<td>8 × 8mm, 775μm thick</td>
</tr>
<tr>
<td>Pin layout</td>
<td>Pitch of 50 μm (Area array), 5,184 pins / chip</td>
<td></td>
</tr>
</tbody>
</table>

- Sn2.3Ag (Electroplating and reflow)
- Cu (Electroplating)
- Al (Electroless nickel immersion gold)
- Si (Organic passivation)
- 35 to 40μm

![Fig. 4 Temperature profile in the final bonding process.](image)
nomenon clearly, chips with larger initial warpage have been used. The initial warpage is +7 μm at 303 K and +25 μm at 443 K when the bump formed side of the top chip is plus direction. After the chip was bonded on the bottom chip, the warpage of the top chip of a CoC was evaluated by the same way.

The cross-sectional interconnection image was observed by SEM in the position of the maximum joint clearance in a chip and analyzed by EDX. The diameter of wetting area which is observed in the cross-sectional image is defined as the diameter of wetting area. The paper has studied about the 5 cases of the diameter of wetting area; (a) 0, (b) 4.5, (c) 9.7, (d) 13.7 and (e) 16.7 μm. These test vehicles were fabricated by the bonding time of 0.25 seconds. Each bonding pressure was (a) 2.9, (b) 0.6, (c) 2.9, (d) 50 and (e) 9.6 mN/pin.

The electric resistance of interconnection was also measured. The increased electric resistance of interconnection is calculated as the following formula. The theoretical electric resistance of interconnection is calculated by shape and specific resistance of interconnection.

\[
\text{Electric resistance of interconnection} = \frac{\text{measured resistance}}{\text{number of pins}} - \text{theoretical electric resistance of interconnection}
\]

3) The status of interconnection after final bonding

For this study, the warpage, the interconnection status and the electric interconnection as same as temporary bonding were evaluated. The temporary-bonded CoC package was fabricated by the bonding time of 0.25 seconds and the bonding pressure was 2.9 mN/pin. The top chip of the package curved 12.6 μm in concave shape when viewed from the back side of the top chip.

To verify the necessity of reductive gas, the status of interconnection under formic acid gas is compared with the one under nitrogen gas. Moreover, the necessity of bonding pressure is verified comparing with two conditions; 2.3 and 25.7 μN/pin.

4. Results and Discussion

4.1 Validity study of plasma cleaning on surface of solder

Figure 5 shows the effect of plasma cleaning on the surface of a bump. It is observed that the thickness of tin oxide film (shown as ‘O’) ranges from 25 to 65 nm before the plasma cleaning and it decreases to less than 1 nm after the plasma cleaning process.

Figure 6 shows the effect of plasma cleaning on the X-ray image of interconnection after temporary-bonding. When the bump is cleaned, it is observed that all interconnections have a smooth surface and uniform shape. In contrast, without plasma cleaning, most of the interconnection has an uneven surface and its shape varies widely. These results indicate the high efficacy of Ar plasma cleaning.

4.2 Influence of diameter of wetting area on interconnection in temporary bonding process

Figure 7 shows the cross-sectional photos of the interconnections after the temporary-bonding. It is observed that the Sn-2.3 Ag solder connects to the Cu pillar on the top with the Ni electrode on the bottom chip. The EDX analysis result of interconnection is shown in Fig. 7(c)’. It is observed that a Cu3Sn layer is formed on the Cu pillar and that a Cu6Sn5 layer is formed on it and that about 1 μm thick IMC Ni3Sn4 phase is formed in between the Ni and Sn interface.

Figure 8 shows the relationship between the diameter of wetting area and the warpage of the top chip after temporary-bonding. Without a wetting area, the warpage is 8 μm. Along with the increase in the diameter of wetting area, the warpage becomes smaller. When the diameter grows more than 10 μm, the warpage is reduced less than 4 μm.

Figure 9 shows the influence of the diameter of wetting area on the increased interconnection resistance. Without
wetting, an open failure occurs. As the diameter of wetting area is larger, the increased interconnection resistance becomes lower. When the diameter of wetting area is over 13 μm, it falls within 25 mΩ/pin.

It is considered these phenomena to be caused by the following mechanism. Firstly, when the top chip is chucked on the bonding head, the solder on the Cu pillar is molten state as shown in Fig. 10 (a). Next, the molten solder touches the flat surface of the Ni electrode and is compressed by the bonding force as shown in Fig. 10 (b). The diameter of wetting area is dependent on quantity of heating and bonding pressure. While the IMC is formed on a part of the surface of the Ni electrode by insufficient quantity of heating, it’s formed all over the Ni electrode with sufficient heating. When the bonding head is released from the top chip, the molten solder is vertically stretched according to the warpage of the chip. After that, as soon as it’s cooled down to its solidification point, the joint shape is

![Fig. 7 The cross-sectional SEM images of solder joints after temporary bonding: each diameter of wetting area is (a) 0, (b) 4.5, (c) 9.7, (d) 13.7, (e) 16.7 μm. The image (c)’ is an enlarged image of (c).](image)

![Fig. 8 Relationship between the diameter of wetting area and the warpage of the top chip after temporary bonding.](image)

![Fig. 9 The influence of the diameter of wetting area on the increased interconnection resistance after temporary bonding.](image)

![Fig. 10 The cross-sectional illustration of the warpage control mechanism: (a) before touching the Ni electrode, (b) in temporary-bonding, (c) when chip is released from the tool.](image)
The paper discusses about the force of the interface between solder and the electrode immediately before the time of solidification of solder. The force which is stretched upward by the warpage of the chip works at the interface shown as ‘F1’ in Fig. 10 (c). The solder-wetting force works downward shown as ‘F2’ in the same figure. The force F2 is proportional to the wetting area on the electrode. If F1 is much larger than F2 immediately before the time of solder solidification, it is considered that the molten solder would be broken, that the warpage would become larger, and that an open would occur. If F1 balances F2 immediately before the time of solder solidification, it is considered that the shape of the molten solder would be determined by the diameter of wetting area. Therefore it is considered that, when the wetting area is max, the molten solder would be compressed most so that the warpage of the top chip would become lowest.

This is why the authors conclude that the warpage of a 50 μm thick chip can be reduced lower than 4 μm even if the temporary-bonding time is only 0.25 seconds.

4.3 Verification of the necessity of reductive gas in final bonding process

Figure 11 shows the cross-sectional photos of the interconnections after the final bonding process. Figures. 11 (c) and (d) show the cross-sectional interconnection image comparing nitrogen gas and reductive gas in the final bonding process. As shown in Fig. 11 (d), under nitrogen gas atmosphere, voids are observed between the Ni electrode and the solder. In contrast, under reductive gas atmosphere, the solder wets the Ni electrode well as shown in Fig. 11 (c).

EDX analysis shows that the interconnection composition is 54.3at%Cu-3.1at%Ni-42.6at%Sn under N2 gas atmosphere and that it is 52.4at%Cu-4.7at%Ni-43.1at%Sn under reductive gas. Judging from the phase diagram, it is considered that both of the interconnections are consist of (Cu,Ni)6Sn5.[8]

The authors consider these results to be caused by the following mechanism. In the temporary-bonding process, the voids are already made because a part of the solder does not spread on the electrode, and the oxide film is formed on the surface of solder around voids. When the nitrogen gas is used in the final bonding process, the oxide film inside the molten solder remains because the voids do not flow. In contrast, under reductive gas the voids becomes easily pushed outside of the solder and spreads all over the electrode because the reductive gas increases the fluidity of the molten solder.

These results indicate the efficiency of reductive gas.

4.4 Verification of the necessity of bonding pressure in final bonding process

In the case of 2.3 and 25.7 μN/pin, the warpage of the chip after final bonding is 17.4 μm and 9.2 μm. This result
shows that the warpage becomes larger than after temporary bonding in lower bonding pressure and that it becomes smaller in higher bonding pressure.

In the case of 2.3 μN/pin, an open has occurred. In contrast, in the case of 25.7 μN/pin, the increased interconnection resistance is within +3 mΩ/pin.

After temporary-bonding, the solder height is 9.3 μm as shown in Fig. 11 (a). While it increases to 10.7 μm in the case of 2.3 μN/pin (see Fig. 11 (b)), it decreases to 5.4 μm in the case of 25.7 μN/pin (see Fig. 11 (c)).

The authors discuss about the final bonding mechanism as follows. While the solder in interconnections remelts, the top chip begins to curve by the heat stress induced in the difference of the co-efficient of inner wiring layers and Si substrate and move upward. When the bonding pressure is lower than the heat stress of the chip, the molten solder is stretched and the warpage becomes larger than after temporary-bonding. On the other hand, when the bonding pressure is higher than the heat stress of the chip, the molten solder is compressed and the warpage decreases.

This is the reason why the authors conclude the bonding pressure is needed for thin chips during the final bonding process.

5. Conclusions

The authors have developed a new flip chip bonding process for the 3D system in package (SiP). The new feature of this process is the separation of the process into two i.e. the temporary-bonding and the batch final-bonding process. In the former process, the solder is rapidly diffused into the electrode on the bottom chip and in the latter process the chips are all together pressed inside a vacuum chamber containing reductive gas. By using this newly-developed process, a very thin chip can even be produced in a short time. For example, when a 50 μm-thick chip with a pitch of 50 μm has been used, it is found that the temporary-bonding time is shorten from 10 seconds to 0.25 seconds. In the near future, the application of this process to the chip on wafer with stacked chips will be our next study.

References

Daisuke Sakurai
Division of manufacturing science, graduate school of engineering, Osaka University completed in 1999. Master degree of engineering.
Currently working for production engineering laboratory, Panasonic.

Takatoshi Osumi
Division of manufacturing science, graduate school of engineering, Osaka University completed in 2002. Master degree of engineering.
Currently working for production engineering laboratory, Panasonic.

Kazuya Ushirokawa
Kinki University
Bachelor of electrical engineering, March, 1995
Currently working for production engineering laboratory, Panasonic.

Takashi Nakamura
Tokyo Institute of Technology
Master of nuclear engineering, March, 1996
Panasonic Factory Solutions Co., Ltd development center, Present

Takatoshi Ishikawa
Fukuoka University
Master of science, March, 1984
Panasonic Factory Solutions Co., Ltd development center, Present