56. 褐炭の熱分解特性に及ぼす高圧アルコール蒸気膨潤—爆砕処理の影響—

(九大工) 林潤一郎, 天本忍, 荻壁克己, 諏岡成治

Effect of Alcohol-Vapor Explosion Treatment on Thermal Degradability of Brown Coal
Jun-ichiro Hayashi, Shinobu Amamoto, Katsuki Kusakabe and Shigeharu Morooka

(Department of Chemical Science and Technology, Kyushu University)

SYNOPSIS:- Morwell brown coal was heat-treated at 260℃ and 300℃ under a vapor of lower alcohols at 1.5-5.8 MPa. Then the pressure was instantaneously released, and the swollen coal was rapidly quenched. Predominant absorption in FT-i.r. spectra of coal treated with vapor of methanol and 2-propanol were attributed to aryl-methyl abd aryl-isopropyl ethers, respectively. The combination of explosion and rapid quenching was indispensable for introducing such ethers and disrupting hydrogen bonds irreversibly. The effect of the explosion on thermal degradability of the coal was evaluated by means of the rapid pyrolysis at 764℃ in a Curie-point pyrolyzer. The explode-quenched coal with methanol or 2-propanol yielded 33 kg of tar per 100 kg of the original coal, 17 kg higher than did the untreated coal. The enhanced tar evolution was explained by suppression of cross-linking reactions as well as donation of hydrogen and alkyl radicals from introduced aryl-alkyl ethers to coal fragment radicals.

1. 緒言
高圧メタノール蒸気中での熟処理に続いて瞬間的な圧力解放を行う爆砕処理を褐炭に施すこと、爆砕によるメタノール蒸気の急激な断熱膨脹〜冷却過程において、非共有結合の不可逆的切断とアルキル化が進行した結果、熟分解反応性が顕著に向上した了。本研究では、(1) 水素結合の不可逆的切断及び (2) 熱的にアルキル化法としての爆砕処理の有効性を数種の低級アルコールを用いた爆砕処理について検討するとともに、熟反応性の改善効果をO-アルキル化と比較した。

2. 実験
石炭試料としてMorwell褐炭(MW, 粒径37〜74mm, 70℃で24h減圧乾燥)を使用した。約1gの原炭を内容積10.2mlの蒸煮部に充填した。蒸煮部を常圧の窒素で置換した後、HPLCボンプからアルコール(CH₃OH, C₂H₅OH, 1-C₃H₇OH, 2-C₃H₇OH, 1-C₄H₁₀OH, 2-C₄H₁₀OHあるいはt-C₄H₁₀OH)を供給した。溶剂供給開始とともに、蒸煮部を10℃/minで所定温度まで加熱した(蒸煮処理)。60分経過後、圧力解放バルブを瞬時に開放して爆砕を行った。このとき、蒸煮炭はバルブ下部の減圧チャンバ（室温）に落下し、急激に冷却される。爆砕の効果を確認するため、メタノールあるいは2-プロパノールを用いて蒸煮処理を行った後、バルブを開放せずに試料を徐冷する処理も行った。TBAH[(C₄H₉)₄NOH]を用いるLiottaの方法が従ってO-メチル化またはO-イソプロピル化したMW炭を調製し、爆砕処理炭の比較試料とした。キューリーポイントバイロライザを用いて764℃で原炭及び各種処理炭の急速熱分解を行った。

3. 実験結果及び考察
3.1 MeOH爆砕処理による MW炭の熟分解特性の変化
Figure 1に、原炭、MeOH処理炭及びO-メチル化炭の熱分解生成物収率を示す。収率はすべて原炭100kgあたりの重量で示している。図中に示した収率は、前処理の段階で生成した無機ガス及びCH₄の収率を含む。MeOH爆砕処理によってタール収率が33kg（原炭の約2倍）に増加
し、CO, CO2, H2O及びH2収率が低下した。無機ガス収率の低下は、水素結合の不可逆的な切断及びO-メチル基の導入によって架橋形成が抑制されることを示している。蒸煮処理及び熱処理をタール収率を増加させたが、増加量は爆破処理にて非常に低い。急激な冷却を伴う爆破処理が、タール収率の著しい向上に不可欠であった。O-メチル化炭素からのタール収率は33kgに達したが、酸処理炭及びTBAH処理炭を基準とすれば8kgの増加である。この値は、爆破処理によるタール収率の増加(16kg)を超えるので小さい。MeOH爆破炭化炭とO-メチル化炭の間で、収率に最も差が現れている生成物はCO及びCH4である。O-メチル化によってCO及びCH4のいずれも増加しているのに対して、爆破処理では、COが減少しCH4については変化がない。O-メチル化によりこれらのガス生成が促進されるのは以下の反応による。

\[\text{Ar} \cdot \text{O} \cdot \text{CH}_3 \rightarrow \text{Ar} \cdot \text{CHO} + 2\text{H} \rightarrow \text{Ar} \cdot \text{H} + \text{CO} \quad (1) \]
\[\text{Ar} \cdot \text{O} \cdot \text{CH}_3 + \text{H} \rightarrow \text{Ar} \cdot \text{O} + \text{CH}_4 \quad (2) \]

反応(1)におけるCOの生成は、導入メチル基が水素供与体として機能したことにより示す。反応(2)は、ガス生成につながらする水素ラジカルの消費反応であるため、タール収率の増加には好ましくない。O-メチル化により原炭100kgあたり約480molのメチル基が導入され、CO及びCH4収率の増加はそれぞれ42mol及び90molであった。一方、MeOH爆破炭化はCH4収率にほとんど影響を与えず、CO収率を著しく減少させた。爆破処理によるメチル基の導入形態はO-メチル化とはかなり異なることがFT-i.r.スペクトルから示された。爆破処理炭で顕著であったaryl-methyl etherに帰属されるi.r.吸収は、タールでは観測されず、導入されたメチル基の大部分は熱分解時に分解したことがあった。爆破処理によって導入されたメチル基はCH4に転換されず、水素供与体として機能したものと考えられる。

3.2 2-ProOH爆破処理によるMW炭の熱分解特性の変化

C2〜C4のアルコールを用いて、260℃で爆破処理を施したMW炭の急速熱分解を行った。いずれの爆破処理もタール収率を6〜7kg増加させたが、メタノール爆破処理と比較するとタール生成促進効果が低かった。一方、300℃での爆破処理はタール収率を顕著に増加させた。2-ProOH蒸煮炭及び爆破炭のFT-i.r.分析をおこなったところ、MeOHを用いた場合と同様に、急激な冷却を伴う爆破処理を行ったときにのみ、aryl-alkyl etherに由来する吸収ピークが1230cm⁻¹及び980cm⁻¹に現れた。2000〜3600cm⁻¹のOH伸縮振動に由来する吸収を比較すると、蒸煮炭に比べて爆破炭が明らかに高波数側にシフトしており、爆破処理が水素結合の切断に有効であることかわかった。O-イソプロピル化炭及び2-Proパノール爆破炭のスペクトルは、MeOH爆破炭にいて得られた結果と同様に、明らかに異なっていた。熱的なアルキル化とLiotta法によるO-アルキル化とは異なる機構で進行することが示唆された。

Table 1に示すように、蒸煮及び爆破処理によりMW炭のH/C比が増加した。300℃熱処理炭を基準として、H/C比の差からイソプロピル基の導入量を算出したところ、蒸煮処理炭及び爆破処理炭について、原炭100kgあたりそれぞれ240及び270molであった。特に後者は、O-イソプロピル化による導入量(260mol)と同等であった。

2-Proパノール爆破処理炭の急速熱分解結果を原炭、蒸煮炭及びO-イソプロピル化炭と比較してFigure 2に示す。爆破処理炭からのタール収率は33kgに達し、タールの増加量はO-イソプロピル化炭を上回った。爆破処理炭及び蒸煮処理炭からの無機ガス収率は、いずれも原炭よりも顕著に減少した。爆破処理と蒸煮処理のタール収率の差は、主としてチャー収率の減少量の差によるものである。O-イソプロピル化炭の熱分解ではCO生成が促進されたが、爆破炭の熱
分解ではCO収率が大きく減少した。H2O収率はいずれの処理によっても減少したが、減少量は爆破処理炭が大きかった。爆破処理及びO-イソプロピル化は、C3H6及びC3H8の収率においても明確に異なる結果を与えた。O-イソプロピル化によりC3H6収率が100 mol（原炭100 kgあたり）增加したが、爆破炭ではわずか40 mol程度であった。このことは、O-イソプロピル化よりも爆破処理によって導入されたiC3H7基が、ガスに転換されずにラジカル供与体として機能する確率が高いことを示している。O-イソプロピル化では、Ar-O-(iC3H7)基とともに-COO-(iC3H7)基も導入される。これに対して、爆破処理では、主として前者が導入された考えられる。Ph-O-(iC3H7)基がの解離エネルギーは255 kJ/molであり、炭素分子の典型的な架橋形態であるジフェニルエタン（PhCH2-C6H5）のメチレン結合の解離エネルギーとはほぼ等しい。イソプロピルエステルの熱安定性はこれらよりもかなり低いため、炭素分子の主鎖の切断で生じるフラグメントラジカルの安定化には寄与しない可能性が高い。

原炭及び2-プロパノール爆破炭表面のSEM観察を行ったところ、蒸煮及び爆破処理により原炭表面にみられる10〜20 nmの微細な粒状組織が消減し、表面の平滑化が進行した。このことは、処理時に膨潤が著しく起こったことを示している。また、爆破炭表面には、波状の部分及びサブミクロンオーダーの気孔が観察された。このような表面形態は原炭及び蒸煮炭には見られず、爆破の瞬間に形成されたものである。爆破炭チャー及び蒸煮炭チャーは、O-イソプロピル化炭と同様に溶融した。これに対して、原炭のチャーはまったく溶融せず、爆破及び蒸煮処理によりMW炭の低分子化性が著しく改善されることがわかった。

引用文献

Fig.1 Yield of pyrolysis products from original, MeOH-treated and O-methylated coals at 764°C.
2. Liotta, R. *Fuel* 58, 724 (1979)

Table 1. Elemental compositions of original, heat-treated and PrOH-treated coals

<table>
<thead>
<tr>
<th>Sample</th>
<th>H</th>
<th>C</th>
<th>N</th>
<th>O+S</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original coal</td>
<td>4.87</td>
<td>64.7</td>
<td>0.6</td>
<td>29.9</td>
<td>100</td>
</tr>
<tr>
<td>2-PrOH-exploded coal(^a)</td>
<td>5.61</td>
<td>70.3</td>
<td>0.6</td>
<td>23.3</td>
<td>95.2</td>
</tr>
<tr>
<td>2-PrOH-exploded coal(^b)</td>
<td>4.95</td>
<td>67.8</td>
<td>0.6</td>
<td>26.6</td>
<td>97.7</td>
</tr>
<tr>
<td>2-PrOH-steamed coal(^c)</td>
<td>5.31</td>
<td>68.4</td>
<td>0.6</td>
<td>25.8</td>
<td>97.7</td>
</tr>
<tr>
<td>1-PrOH-exploded coal(^d)</td>
<td>5.91</td>
<td>72.3</td>
<td>0.6</td>
<td>21.2</td>
<td>94.9</td>
</tr>
<tr>
<td>Heat-treated coal(^e)</td>
<td>4.67</td>
<td>72.4</td>
<td>0.6</td>
<td>22.3</td>
<td>92.8</td>
</tr>
</tbody>
</table>

H, C, N, O+S: wt% on daf coal basis. Yield: sample mass per 100 fold mass of original coal. Explosion temperature and pressure: a) 573 K, 5.3 MPa, b) 533 K, 2.9 MPa, c) 573 K, 5.8 MPa, d) Heat treatment in N\(_2\) of 1.0 MPa at 3.50°C

Fig. 2 Yield of pyrolysis products from original, 2-PrOH-treated and O-methylated coals at 764°C.