No.75 石炭灰からの有害微量元素の溶出挙動と溶出防止
（鹿児島大）○中島常憲，横峯裕典，福田 薫，高梨啓和，大木 章

Elution behavior and control of hazardous trace elements from coal ash
○Tsunenori NAKAJIMA, Yusuke YOKOMINE, Kaoru FUKUDA, Hirokazu TAKANASHI, and Akira OHKI (Kagoshima University)

SYNOPSIS
The elution behavior and control of hazardous trace elements from coal ash which was produced from the coal fired power plant were investigated. When the leaching test was carried out for seven coal ashes, the elution of As and Hg was not observed. However, the concentrations of B and Se in the leachate frequently exceeded the environmental quality standards for soil pollution in Japan. Also, the elution control of hazardous trace elements was examined. The elution of B and Se from coal ash was effectively inhibited by an acid washing using 0.1M HCl.

1. 結言
近年の世界的なエネルギー需要の増加により、火力発電所などの燃焼される石炭灰量は年々増加しており、大分の石炭灰が排出されている。石炭燃焼において発生する灰は主に電気雑音機装置で回収される飛灰である。石炭は他の化石燃料と比較して有害微量元素を含有しているため、石炭灰中にはこれらの有害元素が多く含まれている。石炭灰発生量は年々増加しており、その処理は重要な課題である。現在発生する約2割の石炭灰は、埋めて処分されている。処分場で埋めていた石炭灰が雨水などと接触すると、石炭灰表面に存在するBやSeなどの溶解しやすい元素が溶出し地下水など環境中に拡散することが予想される。さらに、米国などでは一般廃棄物で生ごみなどと共に埋立てて処分されるケースもあ也。このような場合、酸性条件下で水と接触することも考えられ、より多くの有害微量元素が環境中に拡散する恐れがある。また、埋立処分場の確保が困難となっている現状をふまえ、石炭灰をセメントやコンクリート、路盤材などの原料、また肥料や土壌改良材として使用することが検討されている。このような場合には、溶出試験において土壤環境基準を満たす必要があり、石炭灰からの有害微量元素の溶出挙動を明らかにすることは非常に重要である。

本研究では7種の石炭灰を用いて、環境庁告示第46号法およびTCLP法により溶出試験を行い、石炭灰中微量元素の溶出挙動を検討した。また、石炭灰の塩酸洗浄を行い、溶出基準を超えるおそれのある有害元素の溶出防止について検討を行った。

2. 実験方法
2-1 石炭灰の溶出試験
環境庁告示第46号（環境46号）試験を以下の手順にて行った。50mlの共栓付試験管に石炭灰試料と純水をL/S=10となるように投入し、200rpm、室温にて6時間振とうとした。振とう後の溶液を0.45μmのメンブレートフィルターにてろ過し、相中に含まれる各元素濃度を分析した。Hg濃度は冷蒸気原子吸光分析（CV-AAS）にて、SeおよびAs濃度は水素化物発生原子吸光（HG-AAS）分析にて、Bおよびその他の元素濃度はICP-AESにて定量し、各元素の溶出量を求めた。また、TCLP(Toxicity Characteristic Leaching Procedure)試験(米国EPA基準)を以下の手順にて行った。予備試験として塩水により溶出試験を行い溶出液のpHを測定し、その結果により酸化硫黄溶液(pH4.93)及び酸性溶液(pH2.88)の2種類の溶媒を採用した。石炭灰Mのみに予備試験溶出液のpH5.0であったため酸性溶液を選択した。本試験では、50mlの三角フラスコに石炭灰試料及び溶媒(酸性溶液または酸化硫黄溶液)をL/S=20なるよう投入し、30rpm、室温にて18時間振とうとした。振とう後の溶液をガラス繊維ろ紙を用いてろ過し、水相に含まれる微量元素濃度を分析し、各元素の溶出量を求めた。

2-2 石炭灰の酸洗浄
200mlのポリエチレン製容器に石炭灰試料と0.1M HClをL/S=8となるように投入し、200rpm、室温にて3分間振とうとした。振とう後の溶液をろ紙(No.5C)を用いてろ過して、固相と水相に分離した。水相中に含まれるHg濃度をCV-AAS、SeおよびAs濃度をHG-AAS、Bおよびその他の元素濃度をICP-AESによって分析した。固相については、再度純水ですすぎ洗浄し後、2-1の手順にて環境告46号試験を行った。

3. 結果と考察
3-1 石炭灰の溶出試験
種々の石炭灰について、環境告46号試験を行った結果を表1に基づく。ほぼすべての石炭灰において、Bは土壤環境基準(1mg/L)を大きく超過した。Seについても、土壤環境基準(0.01mg/L)を超過した。石炭灰中のB、Seの大部分は、無水性の酸化物として存在しているため、溶出試験において溶出しやすいと考えられる。Crの場合は、溶出試験は水溶性の6倍と考えら
溶出するので、基準値を超える場合が多い。Asについては一部の灰で溶出が確認されたが、土壌環境基準を超える溶出はない。Hgについては全ての石炭灰で溶出しなかった。AsやHgは、石炭灰中で鉱水には難溶性の化学形で存在していると思われる。酸性条件下の埋立を考慮して、米国の溶出試験であるToxicity Characteristic Leaching Procedure（TCLP試験）についても行った。表2に示すように、TCLP試験は溶出溶液に鉱化または酸化酸性液を用いるため、鉱灰を用いる環境46号試験に比べて、Asなど一部の元素で溶出が大きくなったが、BやSeの溶出については、大きな違いはなかった。TCLPの基準値は、日本の埋立基準値に比べて高く（Seは1mg/Lなど）、基準値を超える元素はなかった。

表1 溶出試験（環境46号試験）結果と基準値

<table>
<thead>
<tr>
<th>溶出元素</th>
<th>石炭灰 (mg/L)</th>
<th>土壌汚染基準値</th>
<th>基準値</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>N.D.</td>
<td>0.006</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.008</td>
<td>0.01</td>
</tr>
<tr>
<td>Al</td>
<td>9.0</td>
<td>2.9</td>
<td>0.05</td>
</tr>
<tr>
<td>B</td>
<td>73.3</td>
<td>6.3</td>
<td>20.0</td>
</tr>
<tr>
<td>Ca</td>
<td>623</td>
<td>338</td>
<td>185.0</td>
</tr>
<tr>
<td>Cd</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cr</td>
<td>0.22</td>
<td>0.40</td>
<td>0.07</td>
</tr>
<tr>
<td>Cu</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Fe</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Hg</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mg</td>
<td>0.1</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mn</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Ni</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Pb</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>S</td>
<td>643</td>
<td>285</td>
<td>97</td>
</tr>
<tr>
<td>Se</td>
<td>0.1</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>Zn</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

表2 溶出試験（TCLP試験）結果と基準値

<table>
<thead>
<tr>
<th>溶出元素</th>
<th>石炭灰 (mg/L)</th>
<th>TCLP基準値</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>N.D.</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Al</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>33.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Ca</td>
<td>6594</td>
<td>1320</td>
</tr>
<tr>
<td>Cd</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Cu</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Fe</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Hg</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mg</td>
<td>34.3</td>
<td>3.74</td>
</tr>
<tr>
<td>Mn</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Ni</td>
<td>0.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Pb</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>S</td>
<td>359</td>
<td>510</td>
</tr>
<tr>
<td>Se</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Zn</td>
<td>N.D.</td>
<td>1.2</td>
</tr>
</tbody>
</table>

3-2 石炭灰の酸洗浄

3-1における石炭灰の溶出試験の結果より、BおよびSeについて土壌環境基準を満たさない石炭灰が存在することが明らかとなった。そこで、これらの元素を石炭灰より除去するために、塩酸による洗浄を試みた。塩酸洗浄の効果は、洗浄灰の溶出試験（環境46号試験）により検討した。石炭灰P、R、Sを用いて、純水および濃度の異なる塩酸を用いて酸洗浄を行ったところ塩酸濃度の上昇とともに、洗浄灰からのB溶出量が減少し、0.1M以上の塩酸を洗浄に用いた場合、洗浄効果が大きかった。また、0.1M塩酸を用いて石炭灰の洗浄を行い、B、Seの溶出挙動を検討した。結果をそれぞれ図2、3に示す。酸洗浄を行った後の石炭灰は、B、Seの溶出が大きく抑制され、塩酸洗浄がB、Seの有効な溶出防止策になることがわかった。Crの場合も洗浄灰からの溶出が大きく抑えられた。Hg、Asについても、塩酸洗浄の効果を検討したところ、図3に示すようにAsの溶出抑制が確認されたが、Hgについては、塩酸洗浄の効果が小さかった。