石炭科学会議発表論文集
Online ISSN : 2423-8309
Print ISSN : 2423-8295
ISSN-L : 2423-8295
第58回石炭科学会議
会議情報

ガス化・燃焼 1
2-13 石炭ガス化スラグ溶融点のAI予測システム開発
大塚 有莉神原 信志早川 幸男
著者情報
会議録・要旨集 フリー

p. 48-49

詳細
抄録

Integrated coal gasification combined cycle (IGCC) has the advantage of high coal type compatibility compared to conventional pulverized coal-fired power generation, and high-power generation efficiency can be obtained even when low-grade coal is used. However, the use of a wide variety of coals generates slag with different melting points (RFT), which may cause pipe blockage. To prevent this problem, we attempted to predict the RFT in advance using machine learning. As a result of predicting the RFT from the coal property values, we obtained the result that the prediction was possible with an RMSE of 26.74°C (prediction error of 2.1%).

著者関連情報
© 2021 一般社団法人 日本エネルギー学会
前の記事 次の記事
feedback
Top