6－7. コークス連続製造プロセスにおける予備加熱

（成蹊大，工） ○南雲篤郎，松方正彦，小島紀徳

Preheating of Coal for Continuous Coke Making Process

Atsuro NAGUMO, Masahiko MATSUKATA, Toshinori KOJIMA

(Department of Industrial Chemistry, Seikei University)

1. 緒言

コークス炉のリプレースに備えた次世代コークス技術創出は，21世紀におけるわが国鉄鋼業の存立にかかわる重要課題である。特に，設備投資の大幅削減，環境，労働問題への抜本的な対応，使用石炭の自由度確立，生産変動への柔軟性確保などが次世代コークス技術の必須条件である。

本研究では石炭粉の軟化溶融直前温度までの急速加熱／塊化処理／均一低温加熱の3段連続塊状コークス製造プロセスを想定した，一段目の「石炭粉の急速加熱プロセス」の開発，基礎的知見の蓄積を目的とする。

石炭の前処理としては，以前から予熱炭装置法があり，かさ密度の増大によるコークス性状の向上，原料範囲の拡大などのメリットが期待される。本研究では石炭の軟化温度直前（約400℃）まで急速に加熱することにより乾留時間の短縮，原料範囲の拡大，石炭の改質を期待し，さらにはこれまよより低温でのコークス化を想定している。予備加熱装置としてはコンパクトであり，かつ二段目の塊化プロセスに好影響を及ぼすことが見込まれる。本研究では大量処理，連続処理に適し，熟効率がよく，設置面積が少なく，設備費が比較的安い，などの理由から急速加熱装置として流動層を想定した。また，急速加熱の温度によっては軟化溶融性の発現により粒子凝集が生じるものと思われ，450℃程度までの加熱を対象とした。一連の研究ではガス発生量，装置内凝集特性，さらには生成予熱炭の溶融・塊化特性に対する，加熱，流動条件の影響の把握を目的とし，さらには一段目の急速加熱プロセスの運転条件が，二段目以降の最適操作条件の設定値に影響されることが考慮し，二段目およびプロセス全体との関係についても知見を得ることを目的とした。本報告では，急速加熱部の最高加熱温度の決定および石炭の凝集特性と石炭性状，加熱条件との関係の検討を目的として，加熱速度，炭種，流動化ガス流量を変化させ，凝集温度の測定を行い，凝集における石炭性状，流動化ガス流量，加熱速度の影響について検討した。

—193—
2. 実験方法
【1】実験装置・材料 実験装置をFig.1に示す。装置はステンレス製であり、内径40.0mm、
分散板は0.5mmの穴を7個有する。分散板下
部には粒径3mmのアルミナ粒子を充填し、予
熱部とした。分散板上5cmの温度を指標温度
とし、その点に挿入した熱電対を用いて外部
電気熱を制御した。用いた石炭の物性値をTabl
に示す。粒径範囲は590-840μm（平均
径720μm、Umf at 200℃=159cm³·s⁻¹ at 25
℃）、350-420μm、(平均径390μm、Umf at 20
0℃=46cm³·s⁻¹ at 25℃）、または297-350μm
（平均径320μm、Umf at 200℃=32cm³·s⁻¹ at 25℃）とした。なお400℃におけるUmfの値は、200℃の値の約50%である。またWITBANK
については物性の若干違う2種類（WIT, WBK）
を用いた。
【2】低温昇温下における粒子の凝集特性と生
成ガス量

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Properties of coals</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITBANK</td>
<td>GOON-</td>
</tr>
<tr>
<td>(old)</td>
<td>YELLA</td>
</tr>
<tr>
<td>Particle dens. [g·cm⁻³]</td>
<td>1.14</td>
</tr>
<tr>
<td>Particle diam. [mm]</td>
<td>C</td>
</tr>
<tr>
<td>ø γ [mm]</td>
<td>0.39</td>
</tr>
<tr>
<td>Average R [%]</td>
<td>0.79</td>
</tr>
<tr>
<td>T. Inert [%]</td>
<td>36.5</td>
</tr>
<tr>
<td>CSR</td>
<td>2</td>
</tr>
<tr>
<td>Proximate anal. [dry%]</td>
<td></td>
</tr>
<tr>
<td>ash</td>
<td>7.1</td>
</tr>
<tr>
<td>Vol. N.</td>
<td>33.5</td>
</tr>
<tr>
<td>F.C.</td>
<td>59.4</td>
</tr>
<tr>
<td>Elemental anal. [d.wt%]</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>83.9</td>
</tr>
<tr>
<td>H</td>
<td>5.1</td>
</tr>
<tr>
<td>N</td>
<td>2.2</td>
</tr>
<tr>
<td>S(comb.)</td>
<td>0.6</td>
</tr>
<tr>
<td>O</td>
<td>8.2</td>
</tr>
<tr>
<td>Gieseler plast. (ASTM)</td>
<td></td>
</tr>
<tr>
<td>soft. [%]</td>
<td>678</td>
</tr>
<tr>
<td>max. fluid. [%]</td>
<td>708</td>
</tr>
<tr>
<td>log ddpw</td>
<td>1.08</td>
</tr>
<tr>
<td>solid. [%]</td>
<td>730</td>
</tr>
<tr>
<td>range [%]</td>
<td>52</td>
</tr>
<tr>
<td>Dilatometer (ASTM)</td>
<td></td>
</tr>
<tr>
<td>soft. [%]</td>
<td>673</td>
</tr>
<tr>
<td>max. comp. [%]</td>
<td>745</td>
</tr>
<tr>
<td>max. [%]</td>
<td>9</td>
</tr>
<tr>
<td>%</td>
<td>100</td>
</tr>
<tr>
<td>TCD</td>
<td>111</td>
</tr>
</tbody>
</table>

石炭粒子を充填し、200℃まで昇温した。所定の昇温速度の下で温度分布を測定
しながら昇温し、生成ガスを適宜ガス出口から0.5mlシリンジを用いて採取し、
組成をガスクロ（FID-活性アルミナ、TCD-MS5A、TCD-Porapack Q）を用いて測定

—194—
した。なお、タール分については分析しなかった。層内で明かな温度の急変動が認められたところを凝集点と判断し、その後層内温度を40℃程度上昇させた後実験を終了した。凝集点が判別できなかった場合は500℃程度で実験を終了した。

[3]高速昇温下における粒子の凝集特性と生成ガス量
上述のパッチ式装置を用いた。実験条件の概要をTable 2に併せて示す。凝集温度の測定結果を参考にし、まず、所定量の窒素を流しながら反応器内を所定温度（その石炭の低温加熱における凝集温度以下）ににしておく。設定温度からあまりずれないように（-5K以内）しながら石炭粒子を少しづつ（約1.5時間かけて）層内に投入して行き、所定量を投入完了後、低速加熱実験と同様に低速昇温し、温度の記録とガス分析も同様に行なった。
低くなっている。又、流動化ガス流量が小さくなるにつれて低い温度で凝集した。加熱速度については急速の方が速い場合より高い温度で凝集または凝集しなかった。そこで、急速加熱の運転上のトラブルとなる凝集が起こらない範囲での最高加熱温度というのは、石炭の物性、加熱の速度、流動化ガス流量に起因することがわかった。換言すると、流動層による石炭の凝集において、石炭性状、加熱速度は石炭の分子構造と構造の変化という化学的な影響、流動化ガス流量は石炭粒子同士の剪断という物理的な影響の二つの影響が考えられる。結果として、このFig.3のプロットの温度以下でその条件における最高加熱温度を設定するのが妥当である。

Fig. 4に水素ガス発生温度と凝集温度との関係を示す。凝集温度付近から水素の発生がみられることがわかった。凝集とガス発生とは石炭の性状変化との観点では同じ範疇であるが、相互の関係についてはさらに検討が必要である。このことにより、凝集の指標として生成ガス発生から何等かの情報を得ることができるものと思われる。

4. 結言
急速加熱部の運転上のトラブルとなる凝集について、石炭性状、加熱条件、流動化条件から最高加熱温度の決定を行行った。又、凝集開始温度と石炭物性、生成ガス発生時期との関係を検討した。石炭の流動層による加熱において、最高流動度（log ddpm）が小さい程、急速加熱で、流動化ガス流量が大きい程石炭の凝集温度が上がることがわかり、炭種ごとの最高加熱温度が決定できた。又凝集を生成ガス発生時期から判断することはさらなる検討が必要であるが、その可能性が示唆された。

謝辞
本研究は（社）日本鉄鋼協会「コース製造のための乾留制御部会」の下で行われた。