5-24. 我が国のバイオガス都市ガス利用に関する考察

○ 松岡泰成(西部ガス) 藤野純一(国立環境研究所) 森田明宏(鹿児島大学)

BIOGAS distribution system through natural gas network in Japan
Yasunari Matsuok (Saibu Gas Co.) Junichi FUJINO (NIES), Akihiro MORITA (Kagoshima Univ.)

1 はじめに
持続可能な循環型都市形成のエネルギー側面として, 近年, 非枯渇かつ炭素中立な再生可能エネルギー導入の重要性が認知されている。この潮流に伴い, 現在電気分野では太陽光発電等より生じた低質な電気を, 高質な既存インフラへ導入する取組が盛んに行われている。その一方で, 都市部におけるもう一つのエネルギーインフラである都市ガスは, ガス体での再生可能エネルギーに乏しいこともあって, 未だ再生可能エネルギー導入が行われていない。

そこで本論文では, 再生可能エネルギーの中でも特にガス体でエネルギー回収可能な嫌気性消化技術に着目し, 現行の高質な都市ガスインフラの特性を考慮しつつ, バイオガス都市ガス利用の体系について整理・検討する。

2 バイオガス都市ガス化の課題
2-1 技術的課題
一般にガスの燃焼特性はウォッペ指数 (WI) および燃焼速度 (MCP) の 2 指標により表現される。そして, ガス機器の安定燃焼・安全性を確保するためには燃料とするガスの燃焼特性に合ったガス機器を使用する必要がある。すなわち, 原則としてガス種とそれに使用できるガス機器は一対の関係にあり, かつそのガス機器を使用する間は, 供給ガスを常時ある一定の燃焼特性に維持しなければならない。

<table>
<thead>
<tr>
<th>成分</th>
<th>単位</th>
<th>消化ガス</th>
<th>天然ガス</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4（メタン）</td>
<td>[vol%]</td>
<td>55-70</td>
<td>99.73</td>
</tr>
<tr>
<td>CO2（二酸化炭素）</td>
<td>[vol%]</td>
<td>30-45</td>
<td>0</td>
</tr>
<tr>
<td>N2（窒素）</td>
<td>[vol%]</td>
<td>0-2</td>
<td>0.14</td>
</tr>
<tr>
<td>H2S（硫化水素）</td>
<td>[ppm]</td>
<td>~500</td>
<td>0</td>
</tr>
</tbody>
</table>

発熱量: [MJ/Nm3]
ウォッペ指数 (WI): [MJ/Nm3]

表 1 消化ガス及び天然ガスの主な組成

出所: BIOGAS and Natural Gas Fuel Mixture for the Future, J.Jensen 他, 2000

ここで, 表 1 にバイオガス及び都市ガス（13A）の各ガス組成を示す。表よりバイオガス及び都市ガスは共にメタンを主成分とする混合ガスであるが, 燃
焼特性の一つであるウォッペ指数（WI）に大きな違いがある。したがって、ガス機器の安定燃焼・安全性の観点から、同じメタンを主とするガスであっても都市ガス（13A）を供給するガス・ネットワークに直接バイオガスを圧入することはできない。すなわち、バイオガスを既存ガス・ネットワークへ導入するにはバイオガスに30−40%程含まれるCO2分を除去し、現行13Aガス（CH4：99%前後）まで改質する必要がある。しかし、これには水洗・PSA・膜分離等の手法を用いる必要があり、いずれも多額の資金・エネルギー投入を必要とする。

このように、バイオガスを既存の都市ガス管へ導入するには、技術的・経済的負担の大きい脱炭酸処理を行う必要があり、この問題は、バイオガス先進国デンマークにおいても都市ガス利用の際に解決すべき課題となっている。

2−2 法制度の課題

また、ガス供給を行う際には常に爆発の危険が伴うため、我が国ではガス事業法によりガス供給事業が厳しく規制されている。具体的には、ガス事業者・大口供給以外の事業者がガスを供給するか、あるいは卸供給を行う場合、「ガス主任技術者の巡査及びガス質定期検査等」が法律により義務付けられている。しかし、これを下水処理場等でガス主任技術者が巡査せずガス検査設備も持たない現行の嫌気性消化施設で行うことは経済的に極めて難しく、我が国のバイオガス都市ガス利用を困難なものになっている。

ただし、「ガス主任技術者の巡査及びガス質定期検査等」の制約は、ガス供給先導管長が500m以内であれば免れることができる。したがって新潟県長岡市のように、ガス供給先導管長500m以内という導管制約を満たし得る立地条件にある施設では、バイオガスの都市ガス化が実際に実施されている。

3 バイオガス都市ガス化の今後

3−1 分散型ガス供給システムの提案

前章で記したバイオガス都市ガス利用の課題を要約すると、大きく二つの課題に集約される。即ち一つが供給ガスの質（組成）に関する問題であり、一つが供給ガスの供給・管理に関する問題である。

ここで供給ガスの質に関する問題については、脱炭酸処理を行わなくとも十分燃料として使用できるバイオガスを、導管に圧入し搬送するためだけに一度脱炭酸処理し質を高めることに疑問が生ずる。そして、近年の電気供給体系を振り返ると、系統連携制度の整備に伴い大型発電により電気を送配電する集約型電気供給システムから、次第に太陽光発電や小型コジェネレーション等による分散型電気供給システムへと展開しつつある。したがってこれと同様の発想に基づけば、都市ガスのような高質ガスを必要としない需要家に対し、既存の都市ガスとは別にバイオガスを供給する分散型ガス供給システムを構築してもよいことになる。

−402−
そして事実、デンマークでは上記の概念に基づき、天然ガスネットワークとは異なるローカル・ガス・ネットワークにおいて天然ガスより低質なバイオガス供給を試験的に行っている。これは分散型エネルギー供給という観点から見て、新しいガス供給方式の一つと捉えることができる。

3－2 ガス事業者主導の都市ガス化
一方、供給ガスの供給・管理に関する問題については「ガス主務技術者の逗留及びガス質定期検査等」と定めるガス事業法に対し、自負と適切な運営主体が定義される。すなわちガス主務技術者を多く擁し、ガスに関するノウハウを蓄積しているガス事業者である。したがって、バイオガス都市ガス化事業をガス事業者が主導となり行うことが、もっとも障害の少ないアプローチであると考えられる。

表2 各バイオガス供給方式の類型および特徴

<table>
<thead>
<tr>
<th>供給方式の名称</th>
<th>分散型</th>
<th>個別供給方式</th>
<th>簡易ガス事業方式</th>
<th>低圧管供給方式</th>
<th>高圧管供給方式</th>
<th>原料供給方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>既存都市ガスへの影響</td>
<td>既存ガスインフラの供給が必要</td>
<td>既存ガスインフラとの競合を避けるため、ガス需要者に直接バイオガスを供給する方式</td>
<td>既存ガスインフラからの低圧管を直接供給</td>
<td>既存ガスインフラを供給する方式</td>
<td>バイオガス供給方式</td>
<td>バイオガス施設での脱炭酸処理が不可能であることから、都市ガス製造工場へのガス原料として供給する方式</td>
</tr>
<tr>
<td>バイオガスの供給形態</td>
<td>バイオガス化施設の供給</td>
<td>ガス化施設の供給</td>
<td>ガス化施設の供給</td>
<td>ガス化施設の供給</td>
<td>ガス化施設の供給</td>
<td>ガス化施設の供給</td>
</tr>
<tr>
<td>ガス質</td>
<td>低（脱硫ガス）</td>
<td>中（脱硫ガス+都市ガス）</td>
<td>高（脱硫酸ガス）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオガス化施設の要件</td>
<td>都市ガス事業者と第三者ガス事業者</td>
<td>都市ガス事業者と第三者ガス事業者</td>
<td>都市ガス事業者と第三者ガス事業者</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイオガス化施設の要件</td>
<td>都市ガス事業者と第三者ガス事業者</td>
<td>都市ガス事業者と第三者ガス事業者</td>
<td>都市ガス事業者と第三者ガス事業者</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原料供給方式</td>
<td>バイオガス施設での脱炭酸処理が不可能であることから、都市ガス製造工場へのガス原料として供給する方式</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3－3 バイオガス都市ガス利用の類型
以上の論点より、バイオガスの都市ガス利用に対し、既存都市ガス管への導入
にこだわらず、今後の分散型ガス供給システムという位置付けのもと、広く多様にバイオガスを都市部で利用していく類型を整理し表2に示す。

3 バイオガスに関する支援施策

最後に我が国とバイオガス利用先進国であるデンマークにおけるバイオガス利用支援施策の相違について表3に示す。

表3 日本、デンマークのバイオガス支援施策の相違

<table>
<thead>
<tr>
<th>国家枠組み</th>
<th>各段階</th>
<th>日本</th>
<th>デンマーク</th>
</tr>
</thead>
<tbody>
<tr>
<td>国家枠組み</td>
<td>国家目標</td>
<td>-</td>
<td>■バイオガス生産を4倍とする（Energy21）</td>
</tr>
<tr>
<td>関連施策</td>
<td>□R&Dプロジェクトへの補助金</td>
<td>■R&Dプロジェクトへの補助金</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■実証・実地プロジェクトへの補助金</td>
<td>■実証・実地プロジェクトへの補助金</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■その他の、多数のフォローアッププログラム</td>
<td>■その他、多数のフォローアッププログラム</td>
<td></td>
</tr>
<tr>
<td>上流側 (廃棄物管理)</td>
<td>規制策</td>
<td>■家畜し尿の適性処理（家畜排泄物法）</td>
<td>■畜産し尿の農地還元規制</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■再利用・減量義務（食品リサイクル法）</td>
<td>■産業廃棄物の埋立処理の禁止</td>
</tr>
<tr>
<td></td>
<td>支援策</td>
<td>-</td>
<td>■ガス化施設への廃棄物輸送費補助</td>
</tr>
<tr>
<td>中流側 (ガス化プラント導入)</td>
<td></td>
<td>■調達金利の1/2を利子補給</td>
<td>■投資コストの20~40%を補助</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>■長期低融資制度</td>
</tr>
<tr>
<td>下流側 (生産エネルギー)</td>
<td></td>
<td>-</td>
<td>■バイオガス関連エネルギーの免税</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>■単位発電量当りDKKO.27補助</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>■法的価格による電力購入義務</td>
</tr>
</tbody>
</table>

出典：Centralized Biogas Plants, Danish Institute of Agricultural and Fisheries Economics, 1999

表より、デンマークが国家的定量目標の下、R&Dからバイオガス・エネルギー販売まで、各段階に渡る支援施策を幅広く展開しているのに対し、我が国では終始一貫した支援施策が整備されていない。

中でも最大の相違点は、生産したエネルギーの供給・販売に関する支援施策にある。デンマークではバイオガスから生産した電気に対し既存電力への購入義務や免税措置を設けているのに対し、我が国では然ただし支援施策が整備されていない。したがって京都府八木町や北海道江別市では、バイオガスから生産した電力が電力会社によって安価に取引されている現状があり、また都市ガス化に関する免税措置等も存在しない。

しかし、今後バイオガスを含むバイオマス資源を広く我が国に普及させていくためには、企業のみならず行政サイドの施策による支援体制が欠かせない。よって、今後、表中下流サイドの支援施策が展開されることを望むものである。

－404－