9-2. 需要家の省電力によるCO2削減効果の考え方について

（東京ガス（株）R&D企画部フレンチア研究所）〇古川道信、小山俊彦

Study on the methodology of estimation of the CO2 reduction effect of conserved electricity on demand side

〇Michinobu FURUKAWA, Toshihiko KOYAMA(TOKYO GAS Co.,Ltd)

1. 背景と目的

平成・2・2月「京都議定書」が採択されてから5年半が経ち、今年にもロシアの批准により発効されようとしている。発効に同時に「京都議定書目標達成計画」が施行されることとなり、より具体的なづけのある対策が取り組まれていくこととなる。目標達成シナリオ小委員会中間取りまとめ[1]ではエネルギー消費に関わる対策の削減ポテンシャルの推定の際、電力消費削減量に対するエネルギーによるCO2排出係数の幅を考慮し、全電源平均係数と火力平均係数の二種類の排出係数の考え方がある。一方、電力CO2排出係数に、産官学等の様々な場において検討がなされてきたものの、電力の考え方の特徴が整理された上での有効な使用方法が示されていないのが現状である。そこで本稿では、一般電気事業者からの購入電力消費に関わる個別対策のCO2削減量の評価を行う際の二種類の電力CO2排出係数の特徴の整理、及び両者の関係を数式上で明らかにすることにより、国内制度での有効な利用方法の検討が促進されることを目的として考察を行った。

2. 電力CO2排出係数について
2-1. 二種類の排出係数の考え方

前述二種類の電力CO2排出係数の考え方について単にまとめてみた。前者の考え方は単位発電量当たりのCO2排出係数の異なる複数の電源種別によって供給されている電力に関わる供給側での直接CO2排出量を、需要側にその電力消費量に応じて比例分せたCO2排出責任を負わせるというものである（一需要家の状態量の把握）。一方で後者の考え方は、発電コスト、CO2排出量抑制等への配慮から原子力、水力発電は定期点検を除き、フジフク電化している現在の発電所の運用実態を考慮すると、個別の対策により電力消費量が増減した場合、すべての電源の発電量が同率で増減するのでなく、主に火力発電所の発電量が増減していると考えられ、その増加・削減効果の評価には火力係数を使用すべきであるというものである（日本全体の変量の把握）。

前の考え方は各需要家の電力消費に関わるCO2排出責任を配分する方法としては非常に簡便であるが、電力消費の削減効果を評価する場合すべての電源の同率で増減した、すなわち原子力・水力発電まで増減したという計算になり、日本全体のCO2排出量削減の実態を考慮する可能性があることが指摘されている。また両者の考え方、一需要家への配分量と日本全体の変化量の関係にある直数値数値増減の幅を考慮する必要があることが指摘されている。

2-2. 電力の視点と長期的視点

電力消費削減による日本全体でのCO2排出量の削減効果を評価する際に用いる火力係数の考え方、評価対象とする時間範囲が短期間であれば、発電所の運用実態を踏まえると適用の妥当性があると考えられる。一方長期的な電源構成を考慮すると、電力消費削減によって電源設備新増設の先送りが行われた場合は、削減評価にその電源の排出係数を適用する考え方もあり、その電源特定について検討が必要であるが、参考となる報告書、研究事例[2]では長期的視点においても火力電源と推定されている。

3. 電力消費によるCO2排出量増減の要因分析

長期的にも短期的にも電力需要に対応する電源は火力電源が中心となると推定されているが、火力係数の考え方により削減量の評価を行うと全電源平均係数による排出量実績の数値との整合はとれないことは前述した通りである。そこで各係数の考え方の特徴を踏まえ、日本全体の電力消費にかかわるCO2排出量の増減の要因分析を行うことで、両方の係数によって算定される削減量・排出量を数値上同様に扱えるようになった。日本全体の電力消費によりCO2排出量の増減要因は、需要側・供給側の双方によると考えられる。

＜需要側の要因＞
要因1）需要家の需要の変動
＜要因別の要因＞

Ⅰ）需要家の需要変動による CO2 増減
需要家の需要変動による、需要家の全電源平均係数による排出量実績の変化は式 (1) で表される。

\[X_i = D_i \times \left(\frac{E_i - A_i}{E_i} \times \beta_i \right) - D_j \times \left(\frac{E_j - A_j}{E_j} \times \beta_j \right) \quad i = j \]

\[X_i = D_j \times \left(\frac{E_j - A_j}{E_j} \times \beta_j \right) - D_i \times \left(\frac{E_i - A_i}{E_i} \times \beta_i \right) \quad i \neq j \]

式 (1)

Ⅱ）非化石電源の発電量変動による CO2 増減
非化石電源の発電量の変動による、需要家の全電源平均係数による排出量実績の変化は式 (2) で表される。

\[Y_j = D_i \times \left(\frac{E_i - A_i}{E_i} \times \beta_i \right) - D_j \times \left(\frac{E_j - A_j}{E_j} \times \beta_j \right) \]

式 (2)

Ⅲ）火力係数の変動による CO2 増減
火力係数の変動による、需要家の全電源平均係数による排出量実績の変化は式 (3) で表される。

\[Z_j = D_i \times \left(\frac{E_i - A_i}{E_i} \times \beta_i \right) - D_j \times \left(\frac{E_j - A_j}{E_j} \times \beta_j \right) \]

式 (3)

以上のように変数定義を行い、基準年度や年度から評価年度と年度において日本全体の電力消費に関わる CO2 排出量の増減を対象として上記各要因が日本全体の CO2 排出量へ与える変化が、全電源平均係数による排出量の考え方により、需要家の電力消費量を基に比例配分されることを踏まえた要因分析を行った。

表 1. 要因分析の変数定義

<table>
<thead>
<tr>
<th>要因</th>
<th>基準年度</th>
<th>前年度</th>
<th>各年度</th>
<th>需要家の需要変動による CO2 増減</th>
<th>需要家の需要変動による CO2 増減</th>
<th>需要家の需要変動による CO2 増減</th>
</tr>
</thead>
<tbody>
<tr>
<td>需要家(1)</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>X1</td>
<td>X2</td>
<td>Xn</td>
</tr>
<tr>
<td>需要家(2)</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>X1</td>
<td>X2</td>
<td>Xn</td>
</tr>
<tr>
<td>需要家(3)</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>X1</td>
<td>X2</td>
<td>Xn</td>
</tr>
</tbody>
</table>

図 3. 変数間の関係

要因 1) 需要家の需要変動による CO2 増減

需要家の需要変動による需要家の全電源平均係数による排出量実績の変化は式 (1) で表される。

要因 2) 非化石電源の発電量変動による CO2 増減
非化石電源の発電量の変動による需要家の全電源平均係数による排出量実績の変化は式 (2) で表される。

要因 3) 火力係数の変動による CO2 増減
火力係数の変動による需要家の全電源平均係数による排出量実績の変化は式 (3) で表される。

IV) 交換項

需要家の需要と火力係数の変動による交換項を、非化石電源発電量と火力係数の変数による交換項を以下の式 (4), (5) で表される。

\[x_j = (D_i - D_j)x(\beta_j - \beta_i) \] ･･･ 式 (4)

\[y = -(A_i - A_j)x(\beta_j - \beta_i) \] ･･･ 式 (5)

以上のように定義した変化量について、列方線上田 CO2 排出量を増減させる要因を、行方向においてその変動要因によって影響を受ける需要家の全景を全て整理すると表 2 のようになる。

表 2. 要因分析結果整理表

<table>
<thead>
<tr>
<th>要因 1)</th>
<th>需要家の需要変動による CO2 増減</th>
<th>要因 2)</th>
<th>需要家の需要変動による CO2 増減</th>
<th>要因 3)</th>
<th>需要家の需要変動による CO2 増減</th>
</tr>
</thead>
<tbody>
<tr>
<td>需要家(1)</td>
<td>X1</td>
<td>X2</td>
<td>...</td>
<td>Xn</td>
<td></td>
</tr>
<tr>
<td>需要家(2)</td>
<td>X1</td>
<td>X2</td>
<td>...</td>
<td>Xn</td>
<td></td>
</tr>
<tr>
<td>需要家(3)</td>
<td>X1</td>
<td>X2</td>
<td>...</td>
<td>Xn</td>
<td></td>
</tr>
</tbody>
</table>

以上のように定義した変化量について、列方上田 CO2 排出量を増減させる要因を、行方向においてその変動要因によって影響を受ける需要家の全景を全て整理すると表 2 のようになる。

式 (5)

\[\sum (X_i + Z_i + Y_j) + y = \Delta H \] ･･･ 式 (6)

となり、日本全体の CO2 排出量の変化ΔH について、各変動要因が需要家の排出量実績に与える影響についての要因分析が行えていることがわかる。

表 2 より、全電源平均係数によってある需要家に割り当てられる排出量(列方向)の内訳には、当該需要家の要因による増減増減以外に他需要家の重複変更による変化が繰り込まれており、基準年度からの各主体の変動要因による日本全体での CO2 排出量増減量とは異なるものとなっていることが分かる。

4. 結論に

本稿では二種類の電力 CO2 排出係数について、両者の特徴を踏まえた数値的整合をとる評価方法を考察した。長期的な電源の代替については過去の研究(2)等から火力電源であると推定されるものの、日本に含まれる具体的な CO2 削減シナリオをもとにして電源構成モデルによる検討は今後の課題とする。

＜参考文献＞

[1] 目標達成シナリオ小委員会中間取りまとめ：中間審査第1達成シナリオ小委員会：平成 13 年 7 月
[2] 日本電力調査報告書における電力需要想定及び電力供給計画実現方式の解説：日本電力調査報告書