2-15. 船舶ばら積み貨物としてのメタンハイドレートペレットの自己保存効果と温度との関係

（独立行政法人 海上技術安全研究所） ○城田英之、中島康晴、足田賢次郎、太田進
（三井造船株式会社） 岩崎徹

Correlation between Temperature and Self-Preservation of Methane Hydrate Pellets in Bulk in Ship Cargo Hold

○Hideyuki SHIROMA, Yasuharu NAKAJIMA, Kenjiro HIKIDA, Susumu OTA
(National Maritime Research Institute),
and Toru IWASAKI (Mitsui Engineering & Shipbuilding Co., LTD)

1. 結言

メタンハイドレートは、メタンを主成分、大気圧下では約-80℃で平衡状態となるが、この温度よりも高く近い温度でも急速には分解しない、いわゆる「自己保存効果（Self-preservation Effect）」を有することが、Yakushevらにより報告されている。

現在、日本で消費される天然ガスのほとんどは-160℃の低温で液化・貯蔵され、液化天然ガス（LNG）キャリアによって輸送されている。ところが、こうした方式では液化によるエネルギー損失が非常に大きい。

ガスハイドレートの自己保存効果や高密度ガス包蔵性を効果的に利用することができれば、従来のLNG方式よりもエネルギー的に有利な条件で天然ガスを海上輸送することができる可能性がある。

未開発の中ガス田を対象に、天然ガスをハイドレート化して海上輸送する方法はGudmundssonらにより提案された。天然ガス消費量が今後さらに上昇すると考えられる日本でも、ハイドレートを用いた天然ガス海上輸送技術に関する研究が盛んに行われている。

海上輸送中の天然ガスハイドレート（NGH）の荷物としてはパウダー、スラリー、ペレット等と考えられるが、筆者らは、輸送効率、荷役の効率化、貨物の品質保証等の観点から総合的に判断してペレットが最も実用性が高いと考え、天然ガスハイドレートペレット（NGHP）の海上輸送に関する研究を行ってきた。

NGHPの専用輸送船を設計するためには、輸送中のペレットができるだけ分解しない（=自己保存効果の高い）最適温度を決定する必要がある。そこで本研究では、天然ガスの主成分であるメタンをガス分子とするメタンハイドレートペレット（MHP）を対象として、海上輸送時に船内でもばら積み状態にあるペレットを模擬した条件で、ペレットの自己保存効果と温度との関係を調べた。

2. 実験

天然ガスの成分組成は産地によってばらつきが見られるが、その成分の約90%以上はメタンである。さらに現状を単純化するという観点から、実験試料としてNGHPの代わりにMHPを用いた。

MHPは、三井造船株式会社がNGHPの高速大量生産を目的とする研究のために製作した生成装置及びペレット化装置の試作機によって生成・成形されたもので、メタンの温度・圧力平衡領域において水及び高純度メタンを拡散して人工的にハイドレートパウダーを合成し、これを機械的に加圧して粘状に加工した物質である（直径20mm、重量約3g）。

本研究では、ばら積み状態にあるMHPの自己保存効果と温度との関係を調べるため、50個の試料MHPの温度を高精度で制御できる自己保存性評価実験装置を設計・製作した。実験装置の概念図を図2に示す。

実験手順の概要は次の通りである。

(1) 設定温度より5℃程度低い温度にて、恒温槽内に保存したMHPを50個の試料容器（内容量：約400cc）に一定の温度（-15℃）で3か月間保存する。

(2) 試料保存容器を冷媒で満たした恒温槽内に冷却し、恒温内を一定の設定温度（-20℃、-15℃、-10℃、-5℃の5セット）、大気圧、メタンガス雰囲気中に保存する（恒温実験）。

図1 試料として用いたMHP

(提供：三井造船株式会社)
高精度（温度変動：約±0.1℃）の恒温槽を用いて行う。恒温実験期間は、南見でのガス中から日本までの航海時間を考慮して2週間（336時間）とする。
(3) 恒温実験期間中、試料の分解によって放出されるガス量を連続的に計測する。
(4) 恒温実験終了後、試料封入容器内の温度を0℃以上に上げて試料を完全に分解させる。この際に発生するガスを回収し、MHPの初期包蔵ガス量を推算する。

図2 自己保存性評価実験装置概略図

3. 実験結果及び考察

本実験では、初期包蔵ガス量及び初期MHP重量からMHPの初期ハイドレート化率を推算した。ここに初期ハイドレート化率は、恒温実験開始時刻（＝試料温度が設定温度に達した時刻）に試料中に包蔵されるメタンガス量、理論上包蔵しうるメタンガス量に対する割合として定義される値である。実験において、5種類の設定温度に対する試料の初期ハイドレート化率は71.6〜77.6％であり、ほぼ同様な値の初期ハイドレート化率を持つMHPを用いて実験が行われたと言える。

実験結果を図3に示す。横軸は、恒温実験開始時刻からの経過時間である。縦軸のハイドレート分解率は、恒温実験開始時刻に試料の分解によって放出されるメタンガス量、恒温実験開始時刻に試料中に包蔵されていったメタンガス量に対する割合として定義される値である。設定温度5℃〜20℃では、温度の低下に伴って試料の分解速度は単調に減少した。ところが、さらに温度の低い25℃では、設定温度が20℃の場合よりも分解速度が大きい様子が観察された。

次に、MHPの自己保存効果と設定温度との関係を見るために、恒温実験開始時刻から24時間後までのハイドレート分解率と設定温度との関係を求めた。そのグラフを図4に示す。本実験では、試料の温度を-20℃に保つ場合で最も分解速度が小さいという結果となった。このように、温度の低下とともに分解速度が増大する傾向があるという現象は、Sternら4)によっても報告されている。なおこの結果は、三井造船株式会社で同様に製造された単一MHPを用いて大阪大学で行われた実験結果5)と傾向が良く一致していた。

図3 MHPのハイドレート分解率と温度との関係

図4 恒温実験開始時刻から24時間後までのハイドレート分解率と温度との関係

4. まとめ

ばら積み状態にあるNGHPを模擬した状態で、MHPの自己保存効果と温度との関係を実験的に調べた。その結果、-20℃付近にMHPの自己保存効果の高くなる温度があることが分かった。この結果は、船倉スケールモデルそのものにも基本的に適用可能であると考えられる。

謝辞

本研究は、鉄道建設・運輸施設整備支援機関「運輸分野における基礎的研究推進制度」によって行われたものです。この場を借りて厚くお願い申し上げます。

参考文献

5) 佐藤博ほか，国際フォーラム「天然ガスハイドレートの利用促進」予稿集 2004.