3-11-3 マレーシアにおけるパームオイル廃棄物のエネルギー利用

（東京大）○伊藤慎朗、芋生憲司、横山伸也

The energy utilization of palm oil wastes in Malaysia

○ Norio ITOU, Kenji IMOU, Shinya YOKOYAMA(The University of Tokyo)

SYNOPSIS

This study focused on the environmental problems caused by the wastes from palm industry in Malaysia. Lack of appropriate disposal of EFB and POME from palm processing plant and palm trunks is the cause of the problem. Energy use of these wastes may ease the problem. Four patterns of energy use of the wastes and two scenarios of the total use of the wastes were assumed. The energy balance, the GHG reduction and the energy production potential for each pattern were estimated. Finally scenario analysis was made based on the estimation. The results indicate that 12.3% of electricity demand or 56% of gasoline demand in Malaysia could be substituted.

1. はじめに

現在世界が直面している深刻な地球環境問題として地球温暖化問題および化石燃料の枯渇問題がある。これらの問題を解決する新エネルギーとして再生可能エネルギーが存在し、カーボンニュートラルな性質を持つバイオマスエネルギーが次代を担う有力なエネルギーのひとつとして考えられている。また、食糧と競合しない廃棄物バイオマスが注目され、農業廃棄物がアジア地域において大量かつ未利用で放置されている。本研究ではマレーシアにおいて環境問題を引き起こしているパーム残渣に焦点をあて、その中でも特にメタン放出をしている EFB(Empty Fruit Bunch)および POME(Palm Oil Mill Effluent)について、また近年多量の糖の含有が確認された Trunk についても扱う。そしてメタン放出等の環境問題を解決し、マレーシアのエネルギー需要に貢献することを目標に Trunk からのエタノール生産、EFB からのエタノール生産、EFB からの発電、POME からの発電に関してシステム評価としてエネルギー収支分析と GHG 減減効果そしてポテンシャル評価を行った。またこれらの廃棄物の総合利用を想定し、シナリオ A として Trunk をエタノールに、EFB を電力に、POME を電力にする場合、そしてシナリオ B として Trunk をエタノールに、EFB をエタノールに、POME を電力にする場合のシナリオ B としてシナリオ A に比較したガスパミン実用性の検討を行った。

2. 方法

各エネルギー利用について図 1 のようにインペントリーオを設定した。

図 1 研究の方法（バウンダリの設定）

①Trunk からのエタノールについては、Trunk の収集・運搬・外皮を剥ぎ取るか引剥き・粉碎・エタノール発酵・輸送用燃料としてのエタノールの燃焼
とした。②EFBからのエタノールについては、EFBの運搬・粉碎・エタノール変換・エタノールの燃焼とした。③EFBからの電力については、EFBの運搬・EFB発電・発電所からの焼却灰遠運した。④POMEから
の電力についてはパイオガス発電のみとした。なお、エネルギー収支は産出エネルギーから投入エネルギ
ーを引いたものとして求め、GHG削減量はベースライン排出量からプロジェクト排出量を引いて求めた。
3. 結果と考察
各エネルギー利用別の結果は表1のようになっ
た。いずれの場合もエネルギー収支がプラスとな
りエネルギー的に有効であることがわかった。
GHG削減量に関してはEFBを原料としたエネルギ
ー利用が他を比えて大きな値となった。これは
EFBからエネルギー大量に放出されていることを
表していると思われる。シナリオ別の結果をみると
表2のようなになった。

表1 エネルギー利用別結果

<table>
<thead>
<tr>
<th></th>
<th>Trunk・スターナール</th>
<th>EFB・スターナール</th>
<th>EFB・電力</th>
<th>POME・電力</th>
</tr>
</thead>
<tbody>
<tr>
<td>エネルギー収支 (GWh)</td>
<td>1.38</td>
<td>0.77</td>
<td>0.31</td>
<td>0.12</td>
</tr>
<tr>
<td>エタノール 削減量 (GWh)</td>
<td>472</td>
<td>521</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ゴリゾミ代替率 (%)</td>
<td>27</td>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>発電ポテンシャル (GWh)</td>
<td>-</td>
<td>-</td>
<td>8.321</td>
<td>2.897</td>
</tr>
<tr>
<td>電力需要代替率 (%)</td>
<td>-</td>
<td>-</td>
<td>9.3</td>
<td>3</td>
</tr>
</tbody>
</table>

表2 シナリオ別結果

<table>
<thead>
<tr>
<th></th>
<th>シナリオA</th>
<th>シナリオB</th>
</tr>
</thead>
<tbody>
<tr>
<td>エネルギー収支 (GWh)</td>
<td>1.82</td>
<td>2.28</td>
</tr>
<tr>
<td>エタノール 削減量 (GWh)</td>
<td>472</td>
<td>993</td>
</tr>
<tr>
<td>ゴリゾミ代替率 (%)</td>
<td>27</td>
<td>56</td>
</tr>
<tr>
<td>発電ポテンシャル (GWh)</td>
<td>11.281</td>
<td>2.897</td>
</tr>
<tr>
<td>電力需要代替率 (%)</td>
<td>12.3</td>
<td>3</td>
</tr>
<tr>
<td>発電EFB削減量 (GWh)</td>
<td>568</td>
<td>589</td>
</tr>
<tr>
<td>GHG削減量 (万トンCO₂eq)</td>
<td>4,488</td>
<td>4,656</td>
</tr>
<tr>
<td>GHG削減可能性 (%)</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>