2－4－3 電場触媒反応を用いた低温メタン水蒸気改質による水素製造
(早稲田大学) ○関根 泰・原口将徳 松方正彦・菊地英一

Steam reforming of methane at lower temperature in an electric field.

○Yasushi SEKINE, Masayuki HARAGUCHI, Masahiko MATSUKATA, Eiichi KIKUCHI (Waseda University)

SYNOPSIS: We conducted steam reforming of methane at very low temperature like as 423 K in an electric field. Application of the electric field enabled to conduct low temperature steam reforming of methane. The promotion effect of catalytic reaction in the electric field was not derived from plasma activation, electrolysis, and it was not a Faradic reaction, but a non-Faradic reaction. The distribution of products was 4 to 1 for hydrogen and carbon dioxide. We found that some noble metals, and supports which had redox ability with its lattice oxygen, were effective for the low temperature steam reforming of methane with an aid of the electric field.

1. 緒言
我々はこれまでに電場中での触媒反応が低温でも高い活性を発現することを世界で最初に見いだしてきた。これ電場中での反応（ElectreforTning）は、プラズマやFaradicな電気化学反応ではなく、電子が 50 分子程度の反応に寄与することを見いだしてきた。そこで、本稿では、メタンの水蒸気改質に反応を絞り、電場中での触媒反応に有効な触媒の物性を明らかにするとともに、エネルギー・バランスや反応メカニズムについて検討する。

2. 実験
電場の印加は直流にて行った。数百 kV（触媒の物性に依存して価は変化する）を印加し、微弱な電流が観察されるような条件を創出し、その際の触媒活性について検討した。触媒は担持金属触媒を中心としており、金属としてはニッケル、白金、パラジウム、ロジウムなどを利用。また担体としてはセリアおよびセリアジルコニア、ベロースカイト型酸化物などを用いた。反応は常圧固定床流動式反応器にて行い、生成物の定性定量はガスクロマトグラフにて行った。電場の状態並びに消費電力の見込みはデジタルフオスフォアオシロスコープなどをプロープともに用いた。

3. 結果
最初に、各種触媒を用いてメタンの水蒸気改質を 423 K にて行った。なお、このような低温では、熱力学的平衡制約および反応速度の小ささから電場の印加無しでは水蒸気改質は全く進行し得ないと。

図 1 メタンの水蒸気改質における電場の影響

図 1 に示すように、貴金属を担持したセリアなどの触媒において、電場を印加することで高い活性を発現させることができた。その際の触媒の種類と活性について、表 1 にまとめた。これら、担持金属としては貴金属が適しており、一方でニッケルなどを用いた場合は酸化により低い活性しか得られないことがわたった。また、担体としては、電場を印加する性質を有することが必要なのかはもちろんであ
さらに、これら各種触媒を用いたメンタの水蒸気改質における反応の効率を表1 右端のカラムにまとめた。これらより、本反応においては、電場印加されたエネルギーの大半は吸熱反応のエンタルピーグ値として用いられていることがわかった。

4. まとめ
電場中のメンタの水蒸気改質によって非常に低い423 K程度の温度にて高い効率で水素への転換が可能である。触媒の物性としては、担持金属として貴金属が、担体としては酸素イオン伝導性を有する担体が適していることがわかった。またその際に、電場に投入した微弱なエネルギーはほとんどが吸熱反応のエンタルピーグ値として用いられていることがわかった。

5. 参考文献

表1 各種触媒を用いたメンタのElectroforming

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Conv. %</th>
<th>EPC*</th>
<th>Form. rate (C-base) / μmol min⁻¹</th>
<th>ΔH°*</th>
<th>ΔH°*</th>
<th>ΔEcf*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RhCeO₂</td>
<td>no EF*</td>
<td>0.3</td>
<td>-</td>
<td>2.4</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>28.2</td>
<td>0.69</td>
<td>494.2</td>
<td>7.0</td>
<td>94.9</td>
</tr>
<tr>
<td>Pd/FeO₂</td>
<td>no EF*</td>
<td>0.3</td>
<td>-</td>
<td>0.3</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>12.4</td>
<td>0.51</td>
<td>260.8</td>
<td>0.2</td>
<td>58.2</td>
</tr>
<tr>
<td>Pd/SrTiO₃ no EF</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>13.1</td>
<td>1.6</td>
<td>245.0</td>
<td>0.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Pt/CoO₂</td>
<td>no EF*</td>
<td>0.4</td>
<td>-</td>
<td>0.5</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>15.9</td>
<td>0.39</td>
<td>303.5</td>
<td>8.4</td>
<td>59.9</td>
</tr>
<tr>
<td>Pd/CoO₂</td>
<td>no EF*</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>3.5</td>
<td>2.4</td>
<td>90.0</td>
<td>0.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Ni/CoO₂</td>
<td>no EF*</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>0.1</td>
<td>1.6</td>
<td>1.2</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Ni/SrTiO₃ no EF</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>3.0</td>
<td>2.8</td>
<td>60.0</td>
<td>0.0</td>
<td>15.0</td>
</tr>
<tr>
<td>CeO₂</td>
<td>no EF*</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>0.1</td>
<td>1.6</td>
<td>1.2</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>SrTiO₃ no EF</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>with EF*</td>
<td>0.3</td>
<td>2.4</td>
<td>10.0</td>
<td>0.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

*1: EPC: Electric power consumption. *2: ΔH°: summation of standard combustion enthalpy of products, *3: ΔH°: endothermic enthalpy of the reaction, *4: ΔEcf: the difference of ΔH°(without electric field) and ΔH°(with electric field) at the same temperature, *5: no EF/with EF: no electric field(=conventional catalytic reaction) or with an electric field.