6-2-2 A study of introducing new energy and energy conservation of Asakuchi City Office

○Yusuke MONDEN Tsuguhiko NAKAGAWA (Okayama Prefectural University)

SYNOPSIS

It has been necessary to build a new energy system to enable us to depend less on nuclear powers as well as the CO₂ emissions reduction since the Great East Japan Earthquake occurred. In this study, the authors examined the effects obtained through the replacement of air conditioning and the energy system of both PV and EV in Asakuchi city office. As a result, it is found that CO₂ emissions have reduced 30% or more with an economical benefit.

1. 緒 言

東日本大震災後，わが国ではCO₂排出量を削減するとともに，原子力の依存度を下げるなど安全なエネルギーシステムの構築が急務になっている。自然エネルギーを利用した革新的なシステムの具体例として，空調機の更新，太陽光発電(以下，PVと記す)および電気自動車(以下，EVと記す)を組み合わせたエネルギー需給システムが報告されており，大学へ適用した場合に，CO₂排出量を現状に比べて35%削減できることが明らかにされている。(1) 本研究では，浅口市役所(以下，市役所と記す)を対象として，上記と同様な，空調機の更新，PVおよびEVを組み合わせたエネルギーシステムを適用した効果について検討した。

2. 市役所のエネルギー消費例

市役所で消費されているエネルギーは主に電力とA重油である。更に，市役所の職員が通勤で消費する自動車のガソリンも市役所での業務遂行のために消費されているエネルギーと考えると，市役所での年間のエネルギー消費量は表1のようになる。表1において，ガソリン車による通勤者は約180名であり，A重油は冬季の暖房用として使用されている。これより，市役所のCO₂排出量の53%が化石燃料であり，これらの削減重要と考えられる。

<table>
<thead>
<tr>
<th>消費量</th>
<th>CO₂排出量</th>
</tr>
</thead>
<tbody>
<tr>
<td>電力 334.0 [MWh/年]</td>
<td>185.4</td>
</tr>
<tr>
<td>A重油 11.5 [kL/年]</td>
<td>34.0</td>
</tr>
<tr>
<td>ガソリン 65.6 [kL/年]</td>
<td>171.9</td>
</tr>
<tr>
<td>合計</td>
<td>391.3</td>
</tr>
</tbody>
</table>

3. 新たなエネルギーーシステムの導入可能性の検討

市役所へ新たなエネルギーシステムの導入の可能性を検討するにあたり，図1に示すような，システムを考えた。

図1 新エネルギーシステムの概要
すなわち、空調機は COP の高いヒートポンプタイプ
へ更新し、その動力源は A 重油から電力にする。PV
の導入を拡大する方法として、ガソリンと電力の代替
が可能な EV の導入を図り、PV の電力は EV への供給
を優先するとともに、EV へ供給した残りの余裕電力
は市役所の需要と代替する。また、新たなコスト負担
が生じないように、燃料価格の変動に適応できるシス
テムを採用する。このシステムに関して、季節、天候および
昼夜の影響を考慮した需要予測を評価するたため、1年
間に亘る 1 項目の時系列の電力と燃料のエネルギー
収支についてシミュレーションした。

3.1 空調機の高効率化

空調機を冷房時 COP=5、暖房時 COP=3.61 のヒー
トポンプ式へ更新した場合の結果を図 2 に示す。これ
より、冬場は A 重油の消費量をゼロにするが、電力
消費量は増加する。また、夏場は空調機の性能向上に
より、電力消費が削減される。

図 2 空調リプレイス後の月別電力需要

3.2 PV と EV を組み合わせたシステム

市役所では約 9 割の職員が自動車で通勤しており、
市役所の CO2 排出量の 44% を占めている。通勤距離は
往復 15.4km/日と比較的短く、EV を導入し易い条件と
云える。全通勤車 176 台から 100 台を対象に、表 2 に
示す能力の PV を市役所に設置し、PV の電力を直流(以
下、DC と記す)で直接 EV に充電した場合の電力消費
の需要と消費の内訳を図 3 に示す。

表 2 PV の仕様

<table>
<thead>
<tr>
<th>PV 仕様</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PV 出力</td>
<td>32.3 [kW]</td>
</tr>
<tr>
<td>PV 面積</td>
<td>170 [m²]</td>
</tr>
<tr>
<td>年間発電量</td>
<td>36.9 [MWh/年]</td>
</tr>
</tbody>
</table>

表 2において、PV の年間発電量は市役所の年間需
要の約 10%に相当する。

図 3 PV と EV 導入による電力消費量

図 3 より、市役所における系統内の年間電力消費
量は EV を含め 386 [MWh/年] となり、表 1 の現状に比
べて 22 [MWh/年] 増加する。しかし、A 重油とガソリ
ンの燃料価格の変動に適応できる SV を導入した系
統に示すように、空調機の高効率化と PV と EV を組み
合わせた DC 充電システムの導入により、現状の 391[t-CO2/年]
に対して、272[t-CO2/年]となり、約 30%
削減することができる。

図 4 CO2排出量

なお、PV の設置費用を市役所の運転費で償い、通勤
EV へは電力を現物支給すると、経済性は、単純投資
回収年＝投資額／省エネ経済効果で 10 年である。

4. 結 言

浅沼市役所を対象として、空調機の更新、PV および
EV を組み合わせたエネルギーシステムを適用した効
果について検討した。その結果、年間の CO2排出量を
経済的に約 30%削減できることが分かった。

なお、本研究は浅沼市からの助成を受けた共同研究
により実施しました。

5. 参考文献

(1)下原和也,能登裕浩,中川二彦,“大学構内における
分散型エネルギーネットワークの構成と省エネ節能”
第 15 回電気エネルギー技術シンポジウム講演論
文集,pp267-268,(2010)